Do you want to publish a course? Click here

Self-aligned charge read-out for InAs nanowire quantum dots

213   0   0.0 ( 0 )
 Added by Ivan Shorubalko
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A highly sensitive charge detector is realized for a quantum dot in an InAs nanowire. We have developed a self-aligned etching process to fabricate in a single step a quantum point contact in a two-dimensional electron gas and a quantum dot in an InAs nanowire. The quantum dot is strongly coupled to the underlying point contact which is used as a charge detector. The addition of one electron to the quantum dot leads to a change of the conductance of the charge detector by typically 20%. The charge sensitivity of the detector is used to measure Coulomb diamonds as well as charging events outside the dot. Charge stability diagrams measured by transport through the quantum dot and charge detection merge perfectly.



rate research

Read More

Advanced synthesis of semiconductor nanowires (NWs) enables their application in diverse fields, notably in chemical and electrical sensing, photovoltaics, or quantum electronic devices. In particular, Indium Arsenide (InAs) NWs are an ideal platform for quantum devices, e.g. they may host topological Majorana states. While the synthesis has been continously perfected, only few techniques were developed to tailor individual NWs after growth. Here we present three wet chemical etch methods for the post-growth morphological engineering of InAs NWs on the sub-100 nm scale. The first two methods allow the formation of self-aligned electrical contacts to etched NWs, while the third method results in conical shaped NW profiles ideal for creating smooth electrical potential gradients and shallow barriers. Low temperature experiments show that NWs with etched segments have stable transport characteristics and can serve as building blocks of quantum electronic devices. As an example we report the formation of a single electrically stable quantum dot between two etched NW segments.
Semiconducting nanowires (NWs) are a versatile, highly tunable material platform at the heart of many new developments in nanoscale and quantum physics. Here, we demonstrate charge pumping, i.e., the controlled transport of individual electrons through an InAs NW quantum dot (QD) device at frequencies up to $1.3,$GHz. The QD is induced electrostatically in the NW by a series of local bottom gates in a state of the art device geometry. A periodic modulation of a single gate is enough to obtain a dc current proportional to the frequency of the modulation. The dc bias, the modulation amplitude and the gate voltages on the local gates can be used to control the number of charges conveyed per cycle. Charge pumping in InAs NWs is relevant not only in metrology as a current standard, but also opens up the opportunity to investigate a variety of exotic states of matter, e.g. Majorana modes, by single electron spectroscopy and correlation experiments.
We report measurements of the nonlinear conductance of InAs nanowire quantum dots coupled to superconducting leads. We observe a clear alternation between odd and even occupation of the dot, with sub-gap-peaks at $|V_{sd}|=Delta/e$ markedly stronger(weaker) than the quasiparticle tunneling peaks at $|V_{sd}|=2Delta/e$ for odd(even) occupation. We attribute the enhanced $Delta$-peak to an interplay between Kondo-correlations and Andreev tunneling in dots with an odd number of spins, and substantiate this interpretation by a poor mans scaling analysis.
We demonstrate high-temperature thermoelectric conversion in InAs/InP nanowire quantum dots by taking advantage of their strong electronic confinement. The electrical conductance G and the thermopower S are obtained from charge transport measurements and accurately reproduced with a theoretical model accounting for the multi-level structure of the quantum dot. Notably, our analysis does not rely on the estimate of co-tunnelling contributions since electronic thermal transport is dominated by multi-level heat transport. By taking into account two spin-degenerate energy levels we are able to evaluate the electronic thermal conductance K and investigate the evolution of the electronic figure of merit ZT as a function of the quantum dot configuration and demonstrate ZT ~ 35 at 30 K, corresponding to an electronic effciency at maximum power close to the Curzon- Ahlborn limit.
We study the effects of magnetic and electric fields on the g-factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g-factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g-tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the EDSR response, allowing selective single spin control.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا