Do you want to publish a course? Click here

A planar multipole ion trap

217   0   0.0 ( 0 )
 Added by Roland Wester
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the realisation of a chip-based multipole ion trap manufactured using micro-electromechanical systems (MEMS) technology. It provides ion confinement in an almost field-free volume between two planes of radiofrequency electrodes, deposited on glass substrates, which allows for optical access to the trap. An analytical model of the effective trapping potential is presented and compared with numerical calculations. Stable trapping of argon ions is achieved and a lifetime of 16s is measured. Electrostatic charging of the chip surfaces is studied and found to agree with a numerical estimate.



rate research

Read More

174 - Robert J. Clark 2012
We present designs for multipole ion traps based on a set of planar, annular, concentric electrodes which require only rf potentials to confine ions. We illustrate the desirable properties of the traps by considering a few simple cases of confined ions. We predict that mm-scale surface traps may have trap depths as high as tens of electron volts, or micromotion amplitudes in a 2-D ion crystal as low as tens of nanometers, when parameters of a magnitude common in the field are chosen. Several example traps are studied, and the scaling of those properties with voltage, frequency, and trap scale, for small numbers of ions, is derived. In addition, ions with very high charge-to-mass ratios may be confined in the trap, and species of very different charge-to-mass ratios may be simultaneously confined. Applications of these traps include quantum information science, frequency metrology, and cold ion-atom collisions.
Abstract The magneto-optical trap (MOT) is an essential tool for collecting and preparing cold atoms with a wide range of applications. We demonstrate a planar-integrated MOT by combining an optical grating chip with a magnetic coil chip. The flat grating chip simplifies the conventional six-beam configuration down to a single laser beam; the flat coil chip replaces the conventional anti-Helmholtz coils of a cylindrical geometry. We trap 10^{4} cold ^{87}text{Rb} atoms in the planar-integrated MOT, at a point 3-9 mm above the chip surface. This novel configuration effectively reduces the volume, weight, and complexity of the MOT, bringing benefits to applications including gravimeter, clock and quantum memory devices.
We present a new single-ion endcap trap for high precision spectroscopy that has been designed to minimize ion-environment interactions. We describe the design in detail and then characterize the working trap using a single trapped 171 Yb ion. Excess micromotion has been eliminated to the resolution of the detection method and the trap exhibits an anomalous phonon heating rate of d<n> /dt = 24 +30/-24 per second. The thermal properties of the trap structure have also been measured with an effective temperature rise at the ions position of 0.14 +/- 0.14 K. The small perturbations to the ion caused by this trap make it suitable to be used for an optical frequency standard with fractional uncertainties below the 10^-18 level.
We describe the design, fabrication and testing of a surface-electrode ion trap, which incorporates microwave waveguides, resonators and coupling elements for the manipulation of trapped ion qubits using near-field microwaves. The trap is optimised to give a large microwave field gradient to allow state-dependent manipulation of the ions motional degrees of freedom, the key to multiqubit entanglement. The microwave field near the centre of the trap is characterised by driving hyperfine transitions in a single laser-cooled 43Ca+ ion.
We demonstrate universal quantum control over chains of ions in a surface-electrode ion trap, including all the fundamental operations necessary to perform algorithms in a one-dimensional, nearest-neighbor quantum computing architecture. We realize both single-qubit operations and nearest-neighbor entangling gates with Raman laser beams, and we interleave the two gate types. We report average single-qubit gate fidelities as high as 0.970(1) for two-, three-, and four-ion chains, characterized with randomized benchmarking. We generate Bell states between the nearest-neighbor pairs of a three-ion chain, with fidelity up to 0.84(2). We combine one- and two-qubit gates to perform quantum process tomography of a CNOT gate in a two-ion chain, and we report an overall fidelity of 0.76(3).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا