Do you want to publish a course? Click here

Cavity BPM System Tests for the ILC Spectrometer

101   0   0.0 ( 0 )
 Added by Mark Slater
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The main physics programme of the International Linear Collider (ILC) requires a measurement of the beam energy at the interaction point with an accuracy of $10^{-4}$ or better. To achieve this goal a magnetic spectrometer using high resolution beam position monitors (BPMs) has been proposed. This paper reports on the cavity BPM system that was deployed to test this proposal. We demonstrate sub-micron resolution and micron level stability over 20 hours for a $1m$ long BPM triplet. We find micron-level stability over 1 hour for 3 BPM stations distributed over a $30m$ long baseline. The understanding of the behaviour and response of the BPMs gained from this work has allowed full spectrometer tests to be carried out.



rate research

Read More

IP-BPM (Interaction Point Beam Position Monitor) is an ultra high resolution cavity BPM to be used at ATF2, a test facility for ILC final focus system. Control of beam position in 2 nm precision is required for ATF2. Beam tests at ATF extraction line proved a 8.7 nm position resolution.
A time projection chamber (TPC) is a strong candidate for the central tracker of the international linear collider (ILC) experiment and we have been conducting a series of cosmic ray experiments under a magnetic field up to 4 T, using a small prototype TPC with a replaceable readout device: multi-wire proportional chamber (MWPC) or gas electron multiplier (GEM). We first confirmed that the MWPC readout could not be a fall-back option of the ILC-TPC under a strong axial magnetic field of 4 T since its spatial resolution suffered severely from the so called E x B effect in the vicinity of the wire planes. The GEM readout, on the other hand, was found to be virtually free from the E x B effect as had been expected and gave the resolution determined by the transverse diffusion of the drift electrons (diffusion limited). Furthermore, GEMs allow a wider choice of gas mixtures than MWPCs. Among the gases we tried so far a mixture of Ar-CF4-isobutane, in which MWPCs could be prone to discharges, seems promising as the operating gas of the ILC-TPC because of its small diffusion constant especially under a strong magnetic field. We report the measured drift properties of this mixture including the diffusion constant as a function of the electric field and compare them with the predictions of Magboltz. Also presented is the spatial resolution of a GEM-based ILC-TPC estimated from the measurement with the prototype.
123 - M. Trimpl , M. Koch , R. Kohrs 2006
We have developed a prototype system for the ILC vertex detector based on DEPFET pixels. The system operates a 128x64 matrix (with ~35x25 square micron large pixels) and uses two dedicated microchips, the SWITCHER II chip for matrix steering and the CURO II chip for readout. The system development has been driven by the final ILC requirements which above all demand a detector thinned to 50 micron and a row wise read out with line rates of 20MHz and more. The targeted noise performance for the DEPFET technology is in the range of ENC=100 e-. The functionality of the system has been demonstrated using different radioactive sources in an energy range from 6 to 40keV. In recent test beam experiments using 6GeV electrons, a signal-to-noise ratio of S/N~120 has been achieved with present sensors being 450 micron thick. For improved DEPFET systems using 50 micron thin sensors in future, a signal-to-noise of 40 is expected.
A new spectrometer system was designed and constructed at the secondary beam line K1.8BR in the hadron hall of J-PARC to investigate $bar K N$ interactions and $bar K$-nuclear bound systems. The spectrometer consists of a high precision beam line spectrometer, a liquid $^3$He/$^4$He/D$_2$ target system, a Cylindrical Detector System that surrounds the target to detect the decay particles from the target region, and a neutron time-of-flight counter array located $sim$15 m downstream from the target position. Details of the design, construction, and performance of the detector components are described.
106 - M. Arenz , M. Babutzka , M. Bahr 2016
The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا