We study the evolution of the magnetic field in a Y-type current sheet subject to a brief, localized magnetic reconnection event. The reconnection produces up- and down-flowing reconnected flux tubes which rapidly decelerate when they hit the Y-lines and underlying magnetic arcade loops at the ends of the current sheet. This localized reconnection outflow followed by a rapid deceleration reproduces the observed behavior of post-CME downflowing coronal voids. These simulations support the hypothesis that these observed coronal downflows are the retraction of magnetic fields reconnected in localized patches in the high corona.
We show, theoretically and via MHD simulations, how a short burst of reconnection localized in three dimensions on a one-dimensional current sheet creates a pair of reconnected flux tubes. We focus on the post-reconnection evolution of these flux tubes, studying their velocities and shapes. We find that slow-mode shocks propagate along these reconnected flux tubes, releasing magnetic energy as in steady-state Petschek reconnection. The geometry of these three-dimensional shocks, however, differs dramatically from the classical two-dimensional geometry. They propagate along the flux tube legs in four isolated fronts, whereas in the two-dimensional Petschek model, they form a continuous, stationary pair of V-shaped fronts. We find that the cross sections of these reconnected flux tubes appear as teardrop shaped bundles of flux propagating away from the reconnection site. Based on this, we argue that the descending coronal voids seen by Yohkoh SXT, LASCO, and TRACE are reconnected flux tubes descending from a flare site in the high corona, for example after a coronal mass ejection. In this model, these flux tubes would then settle into equilibrium in the low corona, forming an arcade of post-flare coronal loops.
We study, by means of MHD simulations, the onset and evolution of fast reconnection via the ideal tearing mode within a collapsing current sheet at high Lundquist numbers ($Sgg10^4$). We first confirm that as the collapse proceeds, fast reconnection is triggered well before a Sweet-Parker type configuration can form: during the linear stage plasmoids rapidly grow in a few Alfven times when the predicted ideal tearing threshold $S^{-1/3}$ is approached from above; after the linear phase of the initial instability, X-points collapse and reform nonlinearly. We show that these give rise to a hierarchy of tearing events repeating faster and faster on current sheets at ever smaller scales, corresponding to the triggering of ideal tearing at the renormalized Lundquist number. In resistive MHD this process should end with the formation of sub-critical ($S leq10^4$) Sweet Parker sheets at microscopic scales. We present a simple model describing the nonlinear recursive evolution which explains the timescale of the disruption of the initial sheet.
Reconnection physics at micro-scales is investigated in an electron magnetohydrodynamics frame. A new process of collapse of the neutral current sheet is demonstrated by means of analytical and numerical solutions. It shows how at scales smaller than ion inertia length a compression of the sheet triggers an explosive evolution of current perturbation. Collapse results in the formation of a intense sub-sheet and then an X-point structure embedded into the equilibrium sheet. Hall currents associated with this structure support high reconnection rates. Nonlinear static solution at scales of the electron skin reveals that electron inertia and small viscosity provide an efficient mechanism of field lines breaking. The reconnection rate does not depend on the actual value of viscosity, while the maximum current is found to be restricted even for space plasmas with extremely rare collisions. The results obtained are verified by a two-fluid large-scale numerical simulation.
Dynamic mitigation is presented for filamentation instability and magnetic reconnection in a plasm driven by a wobbling electron sheet current. The wobbling current introduces an oscillating perturbation and smooths the perturbation. The sheet current creates an anti-parallel magnetic field in plasma. The initial small perturbation induces the electron beam filamentation and the magnetic reconnection. When the wobbling or oscillation motion is added to the sheet electron beam along the sheet current surface, the perturbation phase is mixed and consequently the instability growth is delayed remarkably. Normally plasma instabilities are discussed by the growth rate, because it would be difficult to measure or detect the phase of the perturbations in plasmas. However, the phase of perturbation can be controlled externally, for example, by the driver wobbling motion. The superimposition of perturbations introduced actively results in the perturbation smoothing, and the instability growth can be reduced, like feed-forward control.
The recent realization that Sweet-Parker current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets cannot occur in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is being formed. Such an analysis is performed here in the context of nonlinear resistive MHD for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that two onset regimes, single-island and multi-island, are possible, depending on the rate of current sheet formation. A simple model is used to compute the criterion for transition between these two regimes, as well as the reconnection onset time and the current sheet parameters at that moment. For typical solar corona parameters this model yields results consistent with observations.