No Arabic abstract
We study, by means of MHD simulations, the onset and evolution of fast reconnection via the ideal tearing mode within a collapsing current sheet at high Lundquist numbers ($Sgg10^4$). We first confirm that as the collapse proceeds, fast reconnection is triggered well before a Sweet-Parker type configuration can form: during the linear stage plasmoids rapidly grow in a few Alfven times when the predicted ideal tearing threshold $S^{-1/3}$ is approached from above; after the linear phase of the initial instability, X-points collapse and reform nonlinearly. We show that these give rise to a hierarchy of tearing events repeating faster and faster on current sheets at ever smaller scales, corresponding to the triggering of ideal tearing at the renormalized Lundquist number. In resistive MHD this process should end with the formation of sub-critical ($S leq10^4$) Sweet Parker sheets at microscopic scales. We present a simple model describing the nonlinear recursive evolution which explains the timescale of the disruption of the initial sheet.
Reconnection physics at micro-scales is investigated in an electron magnetohydrodynamics frame. A new process of collapse of the neutral current sheet is demonstrated by means of analytical and numerical solutions. It shows how at scales smaller than ion inertia length a compression of the sheet triggers an explosive evolution of current perturbation. Collapse results in the formation of a intense sub-sheet and then an X-point structure embedded into the equilibrium sheet. Hall currents associated with this structure support high reconnection rates. Nonlinear static solution at scales of the electron skin reveals that electron inertia and small viscosity provide an efficient mechanism of field lines breaking. The reconnection rate does not depend on the actual value of viscosity, while the maximum current is found to be restricted even for space plasmas with extremely rare collisions. The results obtained are verified by a two-fluid large-scale numerical simulation.
The recent realization that Sweet-Parker current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets cannot occur in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is being formed. Such an analysis is performed here in the context of nonlinear resistive MHD for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that two onset regimes, single-island and multi-island, are possible, depending on the rate of current sheet formation. A simple model is used to compute the criterion for transition between these two regimes, as well as the reconnection onset time and the current sheet parameters at that moment. For typical solar corona parameters this model yields results consistent with observations.
Magnetic reconnection may be the fundamental process allowing energy stored in magnetic fields to be released abruptly, solar flares and coronal mass ejection (CME) being archetypal natural plasma examples. Magnetic reconnection is much too slow a process to be efficient on the large scales, but accelerates once small enough scales are formed in the system. For this reason, the fractal reconnection scenario was introduced (Shibata and Tanuma 2001) to explain explosive events in the solar atmosphere: it was based on the recursive triggering and collapse via tearing instability of a current sheet originally thinned during the rise of a filament in the solar corona. Here we compare the different fractal reconnection scenarios that have been proposed, and derive generalized scaling relations for the recursive triggering of fast, `ideal - i.e. Lundquist number independent - tearing in collapsing current sheet configurations with arbitrary current profile shapes. An important result is that the Sweet-Parker scaling with Lundquist number, if interpreted as the aspect ratio of the singular layer in an ideally unstable sheet, is universal and does not depend on the details of the current profile in the sheet. Such a scaling however must not be interpreted in terms of stationary reconnection, rather it defines a step in the accelerating sequence of events of the ideal tearing mediated fractal cascade. We calculate scalings for the expected number of plasmoids for such generic profiles and realistic Lundquist numbers.
Dynamic mitigation is presented for filamentation instability and magnetic reconnection in a plasm driven by a wobbling electron sheet current. The wobbling current introduces an oscillating perturbation and smooths the perturbation. The sheet current creates an anti-parallel magnetic field in plasma. The initial small perturbation induces the electron beam filamentation and the magnetic reconnection. When the wobbling or oscillation motion is added to the sheet electron beam along the sheet current surface, the perturbation phase is mixed and consequently the instability growth is delayed remarkably. Normally plasma instabilities are discussed by the growth rate, because it would be difficult to measure or detect the phase of the perturbations in plasmas. However, the phase of perturbation can be controlled externally, for example, by the driver wobbling motion. The superimposition of perturbations introduced actively results in the perturbation smoothing, and the instability growth can be reduced, like feed-forward control.
One of the main questions in magnetic reconnection is the origin of triggering behavior with on/off properties that accounts, once it is activated, for the fast magnetic energy conversion to kinetic and thermal energies at the heart of explosive events in astrophysical and laboratory plasmas. Over the past decade progress has been made on the initiation of fast reconnection via the plasmoid instability and what has been called ideal tearing, which sets in once current sheets thin to a critical inverse aspect ratio $(a/L)_c$: as shown by Pucci and Velli (2014), at $(a/L)_c sim S^{-1/3}$ the time scale for the instability to develop becomes of the order of the Alfven time and independent of the Lundquist number (here defined in terms of current sheet length $L$). However, given the large values of $S$ in natural plasmas, this transition might occur for thicknesses of the inner resistive singular layer which are comparable to the ion inertial length $d_i$. When this occurs, Hall currents produce a three-dimensional quadrupole structure of magnetic field, and the dispersive waves introduced by the Hall effect accelerate the instability. Here we present a linear study showing how the ideal tearing mode critical aspect ratio is modified when Hall effects are taken into account, including more general scaling laws of the growth rates in terms of sheet inverse aspect ratio: the critical inverse aspect ratio is amended to $a/L simeq (di/L)^ {0.29} (1/S)^{0.19}$, at which point the instability growth rate becomes Alfvenic and does not depend on either of the (small) parameters $d_i/L, 1/S$. We discuss the implications of this generalized triggering aspect ratio for recently developed phase diagrams of magnetic reconnection.