Do you want to publish a course? Click here

A suggestion for B-10 imaging during boron neutron capture therapy

356   0   0.0 ( 0 )
 Added by Marco Cortesi Mr.
 Publication date 2007
  fields Physics
and research's language is English
 Authors M. Cortesi




Ask ChatGPT about the research

Selective accumulation of B-10 compound in tumour tissue is a fundamental condition for the achievement of BNCT (Boron Neutron Capture Therapy), since the effectiveness of therapy irradiation derives just from neutron capture reaction of B-10. Hence, the determination of the B-10 concentration ratio, between tumour and healthy tissue, and a control of this ratio, during the therapy, are essential to optimise the effectiveness of the BNCT, which it is known to be based on the selective uptake of B-10 compound. In this work, experimental methods are proposed and evaluated for the determination in vivo of B-10 compound in biological samples, in particular based on neutron radiography and gammaray spectroscopy by telescopic system. Measures and Monte Carlo calculations have been performed to investigate the possibility of executing imaging of the 10B distribution, both by radiography with thermal neutrons, using 6LiF/ZnS:Ag scintillator screen and a CCD camera, and by spectroscopy, based on the revelation of gamma-ray reaction products from B-10 and the H. A rebuilding algorithm has been implemented. The present study has been done for the standard case of B-10 uptake, as well as for proposed case in which, to the same carrier, is also synthesized Gd-157, in the amount of is used like a contrast agent in NMRI.



rate research

Read More

The technique of laser ablation in liquids is applied to produce of Boron-containing nanoparticles from ablation of a Fe$_2$B bulk target enriched in 10B isotope. Laser ablation of the target in liquid isopropanol results in partial disproportionation to free Fe and Boron while nanoparticles of Fe$_2$B are also presented. Nanoparticles are magnetic and can be collected using a permanent magnet. Average size of nanoparticles is of 15 nm. The content of 10B in generated nanoparticles amounts to 76,9 %. Nanoparticles are biocompatible and can be used in Boron Neutron Capture Therapy.
64 - GAP Cirrone , G Cuttone , L Manti 2018
This manuscript provides a response to a recent report by Mazzone et al. available online on arXiv that, in turn, tentatively aims at demonstrating the inefficacy of proton boron capture in hadrotherapy. We clarify that Mazzone et al. do not add any scientific or technical insights to the points extensively discussed in the original manuscript by Cirrone et al., and/or in the series of iterations had with the Referee, which ultimately lead to the publication of our original and pioneering experimental work. Here we summarize some of the key points of the long scientific debate we had during the review process of paper by Cirrone et al., which are very similar to the considerations presented by Mazzone et al.. In conclusion, no quantitative explanation of our robust experimental achievements presented in Cirrone et al. is provided in Mazzone et al.
The use of engineered nanoscale magnetic materials in healthcare and biomedical technologies is rapidly growing. Two examples which have recently attracted significant attention are magnetic particle imaging (MPI) for biological monitoring, and magnetic field hyperthermia (MFH) for cancer therapy. Here for the first time, the capability of a Lissajous scanning MPI device to act as a standalone platform to support the application of MFH cancer treatment is presented. The platform is shown to offer functionalities for nanoparticle localization, focused hyperthermia therapy application, and non-invasive tissue thermometry in one device. Combined, these capabilities have the potential to significantly enhance the accuracy, effectiveness and safety of MFH therapy. Measurements of nanoparticle hyperthermia during protracted exposure to the MPI scanners 3D imaging field sequence revealed spatially focused heating, with a maximum that is significantly enhanced compared with a simple 1-dimensional sinusoidal excitation. The observed spatial heating behavior is qualitatively described based on a phenomenological model considering torques exerted in the Brownian regime. In-vitro cell studies using a human acute monocytic leukemia cell line (THP-1) demonstrated strong suppression of both structural integrity and metabolic activity within 24 h following a 40 min MFH treatment actuated within the Lissajous MPI scanner. Furthermore, reconstructed MPI images of the nanoparticles distributed among the cells, and the temperature-sensitivity of the MPI imaging signal obtained during treatment are demonstrated. In summary, combined Lissajous MPI and MFH technologies are presented; demonstrating for the first time their potential for cancer treatment with maximum effectiveness, and minimal collateral damage to surrounding tissues.
Proton beam therapy can potentially offer improved treatment for cancers of the head and neck and in paediatric patients. There has been a sharp uptake of proton beam therapy in recent years as improved delivery techniques and patient benefits are observed. However, treatments are currently planned using conventional x-ray CT images due to the absence of devices able to perform high quality proton computed tomography (pCT) under realistic clinical conditions. A new plastic-scintillator-based range telescope concept, named ASTRA, is proposed here as the energy tagging detector of a pCT system. Simulations conducted using Geant4 yield an expected energy resolution of 0.7% and have demonstrated the ability of ASTRA to track multiple protons simultaneously. If calorimetric information is used the energy resolution could be further improved to about 0.5%. Assuming clinical beam parameters the system is expected to be able to efficiently reconstruct at least, 10$^8$ protons/s. The performance of ASTRA has been tested by imaging phantoms to evaluate the image contrast and relative stopping power reconstruction.
The $^{10}$B isotope has been almost exclusively used in the neutron-capture radiation therapy (NCT) of cancer for decades. We have identified two other nuclides suitable for the radiotherapy, which have ca.10 times larger cross section of absorption for neutrons and emit heavy charged particles. This would provide several key advantages for potential NCT, such as the possibility to use either a lower nuclide concentration in the target tissues, or a lower neutron irradiation flux. By detecting the characteristic $gamma$ radiation from the spontaneous decay of the radionuclides, one can image and control their accumulation. These advantages could be critical for the revival of the NCT as a safer, more efficient and more widely used cancer therapy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا