No Arabic abstract
Both external environmental selection and internal lower-level evolution are essential for an integral picture of evolution. This paper proposes that the division of internal evolution into DNA/RNA pattern formation (genotype) and protein functional action (phenotype) resolves a universal conflict between fitness and evolvability. Specifically, this paper explains how this universal conflict drove the emergence of genotype-phenotype division, why this labor division is responsible for the extraordinary complexity of life, and how the specific ways of genotype-phenotype mapping in the labor division determine the paths and forms of evolution and development.
Despite numerous mass extinctions in the Phanerozoic eon, the overall trend in biodiversity evolution was not blocked and the life has never been wiped out. Almost all possible catastrophic events (large igneous province, asteroid impact, climate change, regression and transgression, anoxia, acidification, sudden release of methane clathrate, multi-cause etc.) have been proposed to explain the mass extinctions. However, we should, above all, clarify at what timescale and at what possible levels should we explain the mass extinction? Even though the mass extinctions occurred at short-timescale and at the species level, we reveal that their cause should be explained in a broader context at tectonic timescale and at both the molecular level and the species level. The main result in this paper is that the Phanerozoic biodiversity evolution has been explained by reconstructing the Sepkoski curve based on climatic, eustatic and genomic data. Consequently, we point out that the P-Tr extinction was caused by the tectonically originated climate instability. We also clarify that the overall trend of biodiversification originated from the underlying genome size evolution, and that the fluctuation of biodiversity originated from the interactions among the earths spheres. The evolution at molecular level had played a significant role for the survival of life from environmental disasters.
The affinity of antibodies (Abs) produced in vivo for their target antigens (Ags) is typically well below the maximum affinity possible. Nearly 25 years ago, Foote and Eisen explained how an affinity ceiling could arise from constraints associated with the acquisition of soluble antigen by B cells. However, recent studies have shown that B cells in germinal centers (where Ab affinity maturation occurs) acquire Ag not in soluble form but presented as receptor-bound immune complexes on follicular dendritic cells (FDCs). How the affinity ceiling arises in such a scenario is unclear. Here, we argue that the ceiling arises from the weakest link of the chain of protein complexes that bridges B cells and FDCs and is broken during Ag acquisition. This hypothesis explains the affinity ceiling realized in vivo and suggests that strengthening the weakest link could raise the ceiling and improve Ab responses.
The twenty protein coding amino acids are found in proteomes with different relative abundances. The most abundant amino acid, leucine, is nearly an order of magnitude more prevalent than the least abundant amino acid, cysteine. Amino acid metabolic costs differ similarly, constraining their incorporation into proteins. On the other hand, sequence diversity is necessary for protein folding, function and evolution. Here we present a simple model for a cost-diversity trade-off postulating that natural proteomes minimize amino acid metabolic flux while maximizing sequence entropy. The model explains the relative abundances of amino acids across a diverse set of proteomes. We found that the data is remarkably well explained when the cost function accounts for amino acid chemical decay. More than one hundred proteomes reach comparable solutions to the trade-off by different combinations of cost and diversity. Quantifying the interplay between proteome size and entropy shows that proteomes can get optimally large and diverse.
The probability distribution of sequences with maximum entropy that satisfies a given amino acid composition at each site and a given pairwise amino acid frequency at each site pair is a Boltzmann distribution with $exp(-psi_N)$, where the total interaction $psi_N$ is represented as the sum of one body and pairwise interactions. A protein folding theory based on the random energy model (REM) indicates that the equilibrium ensemble of natural protein sequences is a canonical ensemble characterized by $exp(-Delta G_{ND}/k_B T_s)$ or by $exp(- G_{N}/k_B T_s)$ if an amino acid composition is kept constant, meaning $psi_N = Delta G_{ND}/k_B T_s +$ constant, where $Delta G_{ND} equiv G_N - G_D$, $G_N$ and $G_D$ are the native and denatured free energies, and $T_s$ is the effective temperature of natural selection. Here, we examine interaction changes ($Delta psi_N$) due to single nucleotide nonsynonymous mutations, and have found that the variance of their $Delta psi_N$ over all sites hardly depends on the $psi_N$ of each homologous sequence, indicating that the variance of $Delta G_N (= k_B T_s Delta psi_N)$ is nearly constant irrespective of protein families. As a result, $T_s$ is estimated from the ratio of the variance of $Delta psi_N$ to that of a reference protein, which is determined by a direct comparison between $DeltaDelta psi_{ND} (simeq Delta psi_N)$ and experimental $DeltaDelta G_{ND}$. Based on the REM, glass transition temperature $T_g$ and $Delta G_{ND}$ are estimated from $T_s$ and experimental melting temperatures ($T_m$) for 14 protein domains. The estimates of $Delta G_{ND}$ agree well with their experimental values for 5 proteins, and those of $T_s$ and $T_g$ are all within a reasonable range. This method is coarse-grained but much simpler in estimating $T_s$, $T_g$ and $DeltaDelta G_{ND}$ than previous methods.