Do you want to publish a course? Click here

Pressure dependence of the superconducting transition and electron correlations in Na_xCoO_2 cdot 1.3H_2O

167   0   0.0 ( 0 )
 Added by Guo-Qing Zheng
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report T_c and ^{59}Co nuclear quadrupole resonance (NQR) measurements on the cobalt oxide superconductor Na_{x}CoO_{2}cdot 1.3H_{2}O (T_c=4.8 K) under hydrostatic pressure (P) up to 2.36 GPa. T_c decreases with increasing pressure at an average rate of -0.49pm0.09 K/GPa. At low pressures Pleq0.49 GPa, the decrease of T_c is accompanied by a weakening of the spin correlations at a finite wave vector and a reduction of the density of states (DOS) at the Fermi level. At high pressures above 1.93 GPa, however, the decrease of T_c is mainly due to a reduction of the DOS. These results indicate that the electronic/magnetic state of Co is primarily responsible for the superconductivity. The spin-lattice relaxation rate 1/T_1 at P=0.49 GPa shows a T^3 variation below T_c down to Tsim 0.12T_c, which provides compelling evidence for the presence of line nodes in the superconducting gap function.



rate research

Read More

We derive analytic expressions for the critical temperatures of the superconducting (SC) and pseudogap (PG) transitions of the high-Tc cuprates as a function of doping. These are in excellent agreement with the experimental data both for single-layered materials such as LSCO, Bi2201 and Hg1201 and multi-layered ones, such as Bi2212, Bi2223, Hg1212 and Hg1223. Optimal doping occurs when the chemical potential vanishes, thus leading to an universal expression for the optimal SC transition temperatures. This allows for the obtainment of a quantitative description of the growth of such temperatures with the number of layers, N, which accurately applies to the $Bi$, $Hg$ and $Tl$ families of cuprates. We study the pressure dependence of the SC transition temperatures, obtaining excellent agreement with the experimental data for different materials and dopings. These results are obtained from an effective Hamiltonian for the itinerant oxygen holes, which includes both the electric repulsion between them and their magnetic interactions with the localized copper ions. We show that the former interaction is responsible for the SC and the latter, for the PG phases, the phase diagram of cuprates resulting from the competition of both. The Hamiltonian is defined on a bipartite oxygen lattice, which results from the fact that only the $p_x$ and $p_y$ oxygen orbitals alternatively hybridize with the $3d$ copper orbitals. From this, we can provide an unified explanation for the $d_{x^2-y^2}$ symmetry of both the SC and PG order parameters and obtain the Fermi pockets observed in ARPES experiments.
The quantum spin fluctuations of the S = 1/2 Cu ions are important in determining the physical properties of the high-transition temperature (high-Tc) copper oxide superconductors, but their possible role in the electron pairing for superconductivity remains an open question. The principal feature of the spin fluctuations in optimally doped high-Tc superconductors is a well defined magnetic resonance whose energy (Er) tracks Tc (as the composition is varied) and whose intensity develops like an order parameter in the superconducting state. We show that the suppression of superconductivity and its associated condensation energy by a magnetic field in the electron-doped high-Tc superconductor, Pr0.88LaCe0.12CuO4-d (Tc = 24 K), is accompanied by the complete suppression of the resonance and the concomitant emergence of static antiferromagnetic (AF) order. Our results demonstrate that the resonance is intimately related to the superconducting condensation energy, and thus suggest that it plays a role in the electron pairing and superconductivity.
The pressure dependence of superconducting transition temperature $T_{rm c}$ has been investigated through the DC magnetic measurements for FeSe$_{0.8}$ and FeSe$_{1.0}$. For both samples, with increasing pressure $P$, the $T_{rm c}$$-$$P$ curve exhibits a two-step increase, showing a local maximum of $sim$11 K at $P$$sim$1.0 GPa and a rapid increase with an extremely large pressure coefficient for $P$$>$1.5 GPa. $T_{rm c}$ saturates at $sim$25 K (21 K) in FeSe$_{1.0}$ (FeSe$_{0.8}$) for $P$$>$3 GPa. A rapid decrease in superconducting volume fraction is observed with an increase in $T_{rm c}$ above 1.5 GPa, suggesting the presence of electronic inhomogeneity.
161 - S. K. Goh , H. C. Chang , P. Reiss 2014
We report the pressure dependence of the superconducting transition temperature, $T_c$, in TlNi$_2$Se$_{2-x}$S$_x$ detected via the AC susceptibility method. The pressure-temperature phase diagram constructed for TlNi$_{2}$Se$_{2}$, TlNi$_{2}$S$_{2}$ and TlNi$_{2}$SeS exhibits two unexpected features: (a) a sudden collapse of the superconducting state at moderate pressure for all three compositions and (b) a dome-shaped pressure dependence of $T_c$ for TlNi$_{2}$SeS. These results point to the nontrivial role of S substitution and its subtle interplay with applied pressure, as well as novel superconducting properties of the TlNi$_2$Se$_{2-x}$S$_x$ system.
We report the pressure dependences of the superconducting transition temperature (T_c) in several perovskite-type Fe-based superconductors through the resistivity measurements up to ~4 GPa. In Ca_4(Mg,Ti)_3Fe_2As_2O_y with the highest T_c of 47 K in the present study, the T_c keeps almost constant up to ~1 GPa, and starts to decrease above it. From the comparison among several systems, we obtained a tendency that low T_c with the longer a-axis length at ambient pressure increases under pressure, but high T_c with the shorter a-axis length at ambient pressure hardly increases. We also report the ^75As-NMR results on Sr_2VFeAsO_3. NMR spectrum suggests that the magnetic ordering occurs at low temperatures accompanied by some inhomogeneity. In the superconducting state, we confirmed the anomaly by the occurrence of superconductivity in the nuclear spin lattice relaxation rate 1/T_1, but the spin fluctuations unrelated with the superconductivity are dominant. It is conjectured that the localized V-3d moments are magnetically ordered and their electrons do not contribute largely to the Fermi surface and the superconductivity in Sr_2VFeAsO_3.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا