No Arabic abstract
New results of a Programme of study of BAL + IR + Fe II QSOs (at low and high redshift) are presented. Which are based mainly on deep Gemini GMOS integral field unit (IFU/3D) spectroscopy. We have performed a detailed study of the kinematics, morphological, and physical conditions, in the BAL + IR + Fe II QSO: IRAS 04505-2958. From this study, some selected results are presented, mainly for the 3 expanding giant shells (observed with Gemini). In particular, the GMOS data suggest that the outflow (OF) process -in this IR QSO- generated multiple expanding hypergiant shells (from 10, to 100 kpc), in several extreme explosive events. These new Gemini GMOS data are in good agreement with our evolutionary, explosive and composite Model: where part of the ISM of the host galaxy is ejected in the form of multiple giant shells, mainly by HyN explosions. This process could generate satellite/companion galaxies, and even could expel a high fraction -or all- the host galaxy. In addition, this Model for AGN could give important clue about the physical processes that could explain the origin -in AGNs- of very energetic cosmic rays, detected by the P. Auger Observatory.
We present high spatial resolution spectroscopic observations of the proplyd 167-317 (LV2) near the Trapezium cluster in the Orion nebula, obtained during the System Verification run of the Gemini Multi Object Spectrograph (GMOS) Integral Field Unit (IFU) at the Gemini South Observatory. We have detected 38 forbidden and permitted emission lines associated with the proplyd and its redshifted jet. We have been able to detect three velocity components in the profiles of some of these lines: a peak with a 28-33 km/s systemic velocity that is associated with the photoevaporated proplyd flow, a highly redshifted component associated with a previously reported jet (which has receding velocities of about 80-120 km/s with respect to the systemic velocity and is spatially distributed to the southeast of the proplyd) and a less obvious, approaching structure, which may possibly be associated with a faint counter-jet with systemic velocity of (-75 +/- 15) km/s. We find evidences that the redshifted jet has a variable velocity, with slow fluctuations as a function of the distance from the proplyd. We present several background subtracted, spatially distributed emission line maps and we use this information to obtain the dynamical characteristics over the observed field. Using a simple model and with the extinction corrected Halpha fluxes, we estimate the mass loss rate for both the proplyd photoevaporated flow and the redshifted microjet, obtaining (6.2 +/- 0.6) x 10^{-7} M_sun/year and (2.0 +/- 0.7) x 10^{-8} M_sun/year, respectively.
We present two-dimensional stellar and gaseous kinematics of the inner 0.7 $times$ 1.2 kpc$^{2}$ of the Seyfert galaxy ESO 362-G18, derived from optical spectra obtained with the GMOS/IFU on the Gemini South telescope at a spatial resolution of $approx$170 pc and spectral resolution of 36 km s$^{-1}$. ESO 362-G18 is a strongly perturbed galaxy of morphological type Sa or S0/a, with a minor merger approaching along the NE direction. Previous studies have shown that the [OIII] emission shows a fan-shaped extension of $approx$ 10arcsec to the SE. We detect the [OIII] doublet, [NII] and H${alpha}$ emission lines throughout our field of view. The stellar kinematics is dominated by circular motions in the galaxy plane, with a kinematic position angle of $approx$137$^{circ}$. The gas kinematics is also dominated by rotation, with kinematic position angles ranging from 122$^{circ}$ to 139$^{circ}$. A double-Gaussian fit to the [OIII]$lambda$5007 and H${alpha}$ lines, which have the highest signal to noise ratios of the emission lines, reveal two kinematic components: (1) a component at lower radial velocities which we interpret as gas rotating in the galactic disk; and (2) a component with line of sight velocities 100-250 km s$^{-1}$ higher than the systemic velocity, interpreted as originating in the outflowing gas within the AGN ionization cone. We estimate a mass outflow rate of 7.4 $times$ 10$^{-2}$ M$_{odot}$ yr$^{-1}$ in the SE ionization cone (this rate doubles if we assume a biconical configuration), and a mass accretion rate on the supermassive black hole (SMBH) of 2.2 $times$ 10$^{-2}$ M$_{odot}$ yr$^{-1}$. The total ionized gas mass within $sim$84 pc of the nucleus is 3.3 $times$ 10$^{5}$ M$_{odot}$; infall velocities of $sim$34 km s$^{-1}$ in this gas would be required to feed both the outflow and SMBH accretion.
We present a phase-resolved, optical, spectroscopic study of the eclipsing low-mass X-ray binary, EXO 0748-676 = UY Vol. The sensitivity of Gemini combined with our complete phase coverage makes for the most detailed blue spectroscopic study of this source obtained during its extended twenty-four year period of activity. We identify 12 optical emission lines and present trailed spectra, tomograms, and the first modulation maps of this source in outburst. The strongest line emission originates downstream of the stream-impact point, and this component is quite variable from night-to-night. Underlying this is weaker, more stable axisymmetric emission from the accretion disk. We identify weak, sharp emission components moving in phase with the donor star, from which we measure Kem = 329+/-26 km/s. Combining all the available dynamical constraints on the motion of the donor star with our observed accretion disk velocities we favor a neutron star mass close to canonical (M1~1.5Msun) and a very low mass donor (M2~0.1$Msun). We note that there is no evidence for CNO processing that is often associated with undermassive donor stars, however. A main sequence donor would require both a neutron star more massive than 2Msun and substantially sub-Keplerian disk emission.
We present Gemini GMOS-IFU data of eight compact low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyse their stellar kinematics, stellar population, and present two-dimensional maps of these properties covering the central 5x 7 region. We find a large variety of kinematics: from non- to highly-rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally-concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the lambdaR parameter and find six fast-rotators and two slow-rotators, one having a thin counter-rotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive ($M>10^{10}$Msun) ETGs from the A3D sample. The compact low-mass ETGs in our sample are located in high density regions, often close to a massive galaxy and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.
We present a technique to extract ultra-deep diffuse-light spectra from the standard multi-object spectroscopic observations used to investigate extragalactic globular cluster (GC) systems. This technique allows a clean extraction of the spectrum of the host galaxy diffuse light from the same slitlets as the GC targets. We show the utility of the method for investigating the kinematics and stellar populations of galaxies at radii much greater than usually probed in longslit studies, at no additional expense in terms of telescope time. To demonstrate this technique we present Gemini/GMOS spectroscopy of 29 GCs associated with the elliptical galaxy NGC 3923. We compare the measured stellar population parameters of the GC system with those of the spheroid of NGC 3923 at the same projected radii, and find the GCs to have old ages (> 10 Gyr), [alpha/Fe]~0.3 and a range of metallicities running from [Z/H] = -1.8 to +0.35. The diffuse light of the galaxy is found to have ages, metallicities and [alpha/Fe] abundance ratios indistinguishable from those of the red GCs.