Do you want to publish a course? Click here

Entanglement dynamics of two independent qubits in environments with and without memory

140   0   0.0 ( 0 )
 Added by Rosario Lo Franco
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

A procedure to obtain the dynamics of $N$ independent qudits ($d$-level systems) each interacting with its own reservoir, for any arbitrary initial state, is presented. This is then applied to study the dynamics of the entanglement of two qubits, initially in an extended Werner-like mixed state with each of them in a zero temperature non-Markovian environment. The dependence of the entanglement dynamics on the purity and degree of entanglement of the initial states and on the amount of non-Markovianity is also given. This extends the previous work about non-Markovian effects on the two-qubit entanglement dynamics for initial Bell-like states [B. Bellomo textit{et al.}, Phys. Rev. Lett. textbf{99}, 160502 (2007)]. The effect of temperature on the two-qubit entanglement dynamics in a Markovian environment is finally obtained.



rate research

Read More

494 - Jian Ma , Zhe Sun , Xiaoguang Wang 2012
We derive a set of hierarchical equations for qubits interacting with a Lorentz-broadened cavity mode at zero temperature, without using the rotating-wave, Born, and Markovian approximations. We use this exact method to reexamine the entanglement dynamics of two qubits interacting with a common bath, which was previously solved only under the rotating-wave and single-excitation approximations. With the exact hierarchy equation method used here, we observe significant differences in the resulting physics, compared to the previous results with various approximations. Double excitations due to counter-rotating-wave terms are also found to have remarkable effects on the dynamics of entanglement.
Quantum information processing exploits non-local functionality that has led to significant breakthroughs in the successful deployment of quantum mechanical protocols. In this regard, we address the dynamics of entanglement and coherence for three non-interacting qubits initially prepared as maximally entangled GHZ-like state coupled with independent classical environments. Two different Gaussian noises in pure and mixed noisy situations, namely, pure power-law noise, pure fractional Gaussian noise, power-law noise maximized and fractional Gaussian noise maximized cases are assumed to characterize the environments. With the help of time-dependent entanglement witnesses, purity, and decoherence measures, within the full range of parameters, we show that the current mixed noise cases are more detrimental than pure ones where entanglement and coherence are found short-lived. The power-law noise phase, in particular, appears to be more flexible and exploitable for long-term preservation effects. In contrast, we find that in both pure and mixed noise cases, where entanglement and coherence degrade at a relatively high rate, there is no ultimate solution for avoiding the detrimental dephasing effects of fractional Gaussian noise. The three-qubit state becomes disentangled and decoherent within independent classical environments driven by both pure and mixed Gaussian noises, either in long or short interaction time. In addition, due to the lack of the entanglement revival phenomenon, there is no information exchange between the system and the environment. The three-qubit GHZ-like states have thus been realized to be an excellent resource for long enough quantum correlations, coherence, and quantum information preservation in classical independent channels driven by pure power-law noise with extremely low parameter values.
The entanglement dynamics of arrays of qubits is analysed in the presence of some general sources of noise and disorder. In particular, we consider linear chains of Josephson qubits in experimentally realistic conditions. Electromagnetic and other (spin or boson) fluctuations due to the background circuitry and surrounding substrate, finite temperature in the external environment, and disorder in the initial preparation and the control parameters are embedded into our model. We show that the amount of disorder that is typically present in current experiments does not affect the entanglement dynamics significantly, while the presence of noise can have a drastic influence on the generation and propagation of entanglement. We examine under which circumstances the system exhibits steady-state entanglement for both short (N < 10) and long (N > 30) chains and show that, remarkably, there are parameter regimes where the steady-state entanglement is strictly non-monotonic as a function of the noise strength. We also present optimized schemes for entanglement verification and quantification based on simple correlation measurements that are experimentally more economic than state tomography.
We investigate the dynamical behavior of entanglement in a system made by two solid-state emitters, as two quantum dots, embedded in two separated micro-cavities. In these solid-state systems, in addition to the coupling with the cavity mode, the emitter is coupled to a continuum of leaky modes providing additional losses and it is also subject to a phonon-induced pure dephasing mechanism. We model this physical configuration as a multipartite system composed by two independent parts each containing a qubit embedded in a single-mode cavity, exposed to cavity losses, spontaneous emission and pure dephasing. We study the time evolution of entanglement of this multipartite open system finally applying this theoretical framework to the case of currently available solid-state quantum dots in micro-cavities.
We study the non-equilibrium dynamics of a pair of qubits made of two-level atoms separated in space with distance $r$ and interacting with one common electromagnetic field but not directly with each other. Our calculation makes a weak coupling assumption but no Born or Markov approximation. We write the evolution equations of the reduced density matrix of the two-qubit system after integrating out the electromagnetic field modes. We study two classes of states in detail: Class A is a one parameter family of states which are the superposition of the highest energy and lowest energy states, and Class B states which are the linear combinations of the symmetric and the antisymmetric Bell states. Our results for an initial Bell state are similar to those obtained before for the same model derived under the Born-Markov approximation. However, in the Class A states the behavior is qualitatively different: under the non-Markovian evolution we do not see sudden death of quantum entanglement and subsequent revivals, except when the qubits are sufficiently far apart. We provide explanations for such differences of behavior both between these two classes of states and between the predictions from the Markov and non-Markovian dynamics. We also study the decoherence of this two-qubit system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا