Cognitive radios have been studied recently as a means to utilize spectrum in a more efficient manner. This paper focuses on the fundamental limits of operation of a MIMO cognitive radio network with a single licensed user and a single cognitive user. The channel setting is equivalent to an interference channel with degraded message sets (with the cognitive user having access to the licensed users message). An achievable region and an outer bound is derived for such a network setting. It is shown that under certain conditions, the achievable region is optimal for a portion of the capacity region that includes sum capacity.
Cognitive radios sense the radio spectrum in order to find unused frequency bands and use them in an agile manner. Transmission by the primary user must be detected reliably even in the low signal-to-noise ratio (SNR) regime and in the face of shadowing and fading. Communication signals are typically cyclostationary, and have many periodic statistical properties related to the symbol rate, the coding and modulation schemes as well as the guard periods, for example. These properties can be exploited in designing a detector, and for distinguishing between the primary and secondary users signals. In this paper, a generalized likelihood ratio test (GLRT) for detecting the presence of cyclostationarity using multiple cyclic frequencies is proposed. Distributed decision making is employed by combining the quantized local test statistics from many secondary users. User cooperation allows for mitigating the effects of shadowing and provides a larger footprint for the cognitive radio system. Simulation examples demonstrate the resulting performance gains in the low SNR regime and the benefits of cooperative detection.
This paper studies the capacity of a general multiple-input multiple-output (MIMO) free-space optical intensity channel under a per-input-antenna peak-power constraint and a total average-power constraint over all input antennas. The focus is on the scenario with more transmit than receive antennas. In this scenario, different input vectors can yield identical distributions at the output, when they result in the same image vector under multiplication by the channel matrix. We first determine the most energy-efficient input vectors that attain each of these image vectors. Based on this, we derive an equivalent capacity expression in terms of the image vector, and establish new lower and upper bounds on the capacity of this channel. The bounds match when the signal-to-noise ratio (SNR) tends to infinity, establishing the high-SNR asymptotic capacity. We also characterize the low-SNR slope of the capacity of this channel.
Spectrum sensing is one of the enabling functionalities for cognitive radio (CR) systems to operate in the spectrum white space. To protect the primary incumbent users from interference, the CR is required to detect incumbent signals at very low signal-to-noise ratio (SNR). In this paper, we present a spectrum sensing technique based on correlating spectra for detection of television (TV) broadcasting signals. The basic strategy is to correlate the periodogram of the received signal with the a priori known spectral features of the primary signal. We show that according to the Neyman-Pearson criterion, this spectral correlation-based sensing technique is asymptotically optimal at very low SNR and with a large sensing time. From the system design perspective, we analyze the effect of the spectral features on the spectrum sensing performance. Through the optimization analysis, we obtain useful insights on how to choose effective spectral features to achieve reliable sensing. Simulation results show that the proposed sensing technique can reliably detect analog and digital TV signals at SNR as low as -20 dB.
We study the secrecy capacity of a helper-assisted Gaussian wiretap channel with a source, a legitimate receiver, an eavesdropper and an external helper, where each terminal is equipped with multiple antennas. Determining the secrecy capacity in this scenario generally requires solving a nonconvex secrecy rate maximization (SRM) problem. To deal with this issue, we first reformulate the original SRM problem into a sequence of convex subproblems. For the special case of single-antenna legitimate receiver, we obtain the secrecy capacity via a combination of convex optimization and one-dimensional search, while for the general case of multi-antenna legitimate receiver, we propose an iterative solution. To gain more insight into how the secrecy capacity of a helper-assisted Gaussian wiretap channel behaves, we examine the achievable secure degrees of freedom (s.d.o.f.) and obtain the maximal achievable s.d.o.f. in closed-form. We also derive a closed-form solution to the original SRM problem which achieves the maximal s.d.o.f.. Numerical results are presented to illustrate the efficacy of the proposed schemes.
In this work, novel upper and lower bounds for the capacity of channels with arbitrary constraints on the support of the channel input symbols are derived. As an immediate practical application, the case of multiple-input multiple-output channels with amplitude constraints is considered. The bounds are shown to be within a constant gap if the channel matrix is invertible and are tight in the high amplitude regime for arbitrary channel matrices. Moreover, in the high amplitude regime, it is shown that the capacity scales linearly with the minimum between the number of transmit and receive antennas, similarly to the case of average power-constrained inputs.