The thermal resistance between a nanostructure and a half-body is calculated in the framework of particle-phonons physics. The current models approximate the nanostructure as a thermal bath. We prove that the multireflections of heat carriers in the nanostructure significantly increase resistance in contradiction with former predictions. This increase depends on the shape of the nanostructure and the heat carriers mean free path only. We provide a general and simple expression for the contact resistance and examine the specific cases of nanowires and nanoparticles.
We point out that the effective channel for the interfacial thermal conductance, the inverse of Kapitza resistance, of metal-insulator/semiconductor interfaces is governed by the electron-phonon interaction mediated by the surface states allowed in a thin region near the interface. Our detailed calculations demonstrate that the interfacial thermal conductance across Pb/Pt/Al/Au-diamond interfaces are only slightly different among these metals, and reproduce well the experimental results of the interfacial thermal conductance across metal-diamond interfaces observed by Stoner et al. [Phys. Rev. Lett. 68, 1563 (1992)] and most recently by Hohensee et al. [Nature Commun. 6, 6578 (2015)].
The nanoscopic structure and the stationary propagation velocity of (1+1)-dimensional solid-on-solid interfaces in an Ising lattice-gas model, which are driven far from equilibrium by an applied force, such as a magnetic field or a difference in (electro)chemical potential, are studied by an analytic nonlinear-response approximation together with kinetic Monte Carlo simulations. Here we consider the case that the system is coupled to a two-dimensional phonon bath. In the resulting dynamic, transitions that conserve the system energy are forbidden, and the effects of the applied force and the interaction energies do not factorize (a so-called hard dynamic). In full agreement with previous general theoretical results we find that the local interface width changes dramatically with the applied force. However, in contrast with other hard dynamics, this change is nonmonotonic in the driving force. However, significant differences between theory and simulation are found near two special values of the driving force, where certain transitions allowed by the solid-on-solid model become forbidden by the phonon-assisted dynamic. Our results represent a significant step toward providing a solid physical foundation for kinetic Monte Carlo simulations.
Raman scattering in the spin-crossover system [Fe(pmd)(H2O){Au(CN)2}2]*H2O reveals a complex three-phase spin-state transition in contrast to earlier observations in magnetization measurements. We observe different spin state phases as function of temperature and electromagnetic radiation in the visible spectral range. There exists a fluctuating spin state phase with an unexpected wipeout of the low frequency phonon scattering intensity. Furthermore we observe one phase with reduced symmetry that is attributed to a cooperative Jahn-Teller effect. Pronounced electron-phonon interaction manifests itself as a strong Fano-resonance of phonons related to {FeN6} and {FeN4O2} coordination octahedra. Density functional theory supports this interpretation.
We report on experimental investigation of thermal contact resistance of the noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness. It is found that the thermal contact resistance depends on the graphene loading non-monotonically, achieving its minimum at the loading fraction of ~15 wt.%. Increasing the surface roughness by ~1 micrometer results in approximately the factor of x2 increase in the thermal contact resistance for this graphene loading. The obtained dependences of the thermal conductivity, thermal contact resistance, and the total thermal resistance of the thermal interface material layer on the graphene loading and surface roughness indicate the need for optimization of the loading fraction for specific materials and roughness of the connecting surfaces. Our results are important for developing graphene technologies for thermal management of high-power-density electronics.
We observe a crossover from electron-phonon (ep) coupling limited energy relaxation to that governed by thermal boundary resistance (pp) in copper films at sub-kelvin temperatures. Our measurement yields a quantitative picture of heat currents, in terms of temperature dependences and magnitudes, in both ep and pp limited regimes, respectively. We show that by adding a third layer in between the copper film and the substrate, the thermal boundary resistance is increased fourfold, consistent with an assumed series connection of thermal resistances.