Do you want to publish a course? Click here

On Properties of the Ising Model for Complex Energy/Temperature and Magnetic Field

122   0   0.0 ( 0 )
 Added by Robert Shrock
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study some properties of the Ising model in the plane of the complex (energy/temperature)-dependent variable $u=e^{-4K}$, where $K=J/(k_BT)$, for nonzero external magnetic field, $H$. Exact results are given for the phase diagram in the $u$ plane for the model in one dimension and on infinite-length quasi-one-dimensional strips. In the case of real $h=H/(k_BT)$, these results provide new insights into features of our earlier study of this case. We also consider complex $h=H/(k_BT)$ and $mu=e^{-2h}$. Calculations of complex-$u$ zeros of the partition function on sections of the square lattice are presented. For the case of imaginary $h$, i.e., $mu=e^{itheta}$, we use exact results for the quasi-1D strips together with these partition function zeros for the model in 2D to infer some properties of the resultant phase diagram in the $u$ plane. We find that in this case, the phase boundary ${cal B}_u$ contains a real line segment extending through part of the physical ferromagnetic interval $0 le u le 1$, with a right-hand endpoint $u_{rhe}$ at the temperature for which the Yang-Lee edge singularity occurs at $mu=e^{pm itheta}$. Conformal field theory arguments are used to relate the singularities at $u_{rhe}$ and the Yang-Lee edge.



rate research

Read More

We study numerically the non-equilibrium critical properties of the Ising model defined on direct products of graphs, obtained from factor graphs without phase transition (Tc = 0). On this class of product graphs, the Ising model features a finite temperature phase transition, and we find a pattern of scaling behaviors analogous to the one known on regular lattices: Observables take a scaling form in terms of a function L(t) of time, with the meaning of a growing length inside which a coherent fractal structure, the critical state, is progressively formed. Computing universal quantities, such as the critical exponents and the limiting fluctuation-dissipation ratio X_infty, allows us to comment on the possibility to extend universality concepts to the critical behavior on inhomogeneous substrates.
196 - P. Grinza , A. Rago 2002
A numerical study of finite temperature features of thermodynamical observables is performed for the lattice 2d Ising model. Our results support the conjecture that the Finite Size Scaling analysis employed in the study of integrable perturbation of Conformal Field Theory is still valid in the present case, where a non-integrable perturbation is considered.
We present a complementary estimation of the critical exponent $alpha$ of the specific heat of the 5D random-field Ising model from zero-temperature numerical simulations. Our result $alpha = 0.12(2)$ is consistent with the estimation coming from the modified hyperscaling relation and provides additional evidence in favor of the recently proposed restoration of dimensional reduction in the random-field Ising model at $D = 5$.
We numerically simulate the time evolution of the Ising field theory after quenches starting from the $E_8$ integrable model using the Truncated Conformal Space Approach. The results are compared with two different analytic predictions based on form factor expansions in the pre-quench and post-quench basis, respectively. Our results clarify the domain of validity of these expansions and suggest directions for further improvement. We show for quenches in the $E_8$ model that the initial state is not of the integrable pair state form. We also construct quench overlap functions and show that their high-energy asymptotics are markedly different from those constructed before in the sinh/sine-Gordon theory, and argue that this is related to properties of the ultraviolet fixed point.
Pyrochlore magnets are candidates for spin-ice behavior. We present theoretical simulations of relevance for the pyrochlore family R2Ti2O7 (R= rare earth) supported by magnetothermal measurements on selected systems. By considering long ranged dipole-dipole as well as short-ranged superexchange interactions we get three distinct behaviours: (i) an ordered doubly degenerate state, (ii) a highly disordered state with a broad transition to paramagnetism, (iii) a partially ordered state with a sharp transition to paramagnetism. Thus these competing interactions can induce behaviour very different from conventional ``spin ice. Closely corresponding behaviour is seen in the real compounds---in particular Ho2Ti2O7 corresponds to case (iii) which has not been discussed before, rather than (ii) as suggested earlier.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا