Do you want to publish a course? Click here

Contextual Information Retrieval based on Algorithmic Information Theory and Statistical Outlier Detection

168   0   0.0 ( 0 )
 Added by David Camacho
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

The main contribution of this paper is to design an Information Retrieval (IR) technique based on Algorithmic Information Theory (using the Normalized Compression Distance- NCD), statistical techniques (outliers), and novel organization of data base structure. The paper shows how they can be integrated to retrieve information from generic databases using long (text-based) queries. Two important problems are analyzed in the paper. On the one hand, how to detect false positives when the distance among the documents is very low and there is actual similarity. On the other hand, we propose a way to structure a document database which similarities distance estimation depends on the length of the selected text. Finally, the experimental evaluations that have been carried out to study previous problems are shown.



rate research

Read More

261 - Peter D. Grunwald 2008
We introduce algorithmic information theory, also known as the theory of Kolmogorov complexity. We explain the main concepts of this quantitative approach to defining `information. We discuss the extent to which Kolmogorovs and Shannons information theory have a common purpose, and where they are fundamentally different. We indicate how recent developments within the theory allow one to formally distinguish between `structural (meaningful) and `random information as measured by the Kolmogorov structure function, which leads to a mathematical formalization of Occams razor in inductive inference. We end by discussing some of the philosophical implications of the theory.
In the group testing problem we aim to identify a small number of infected individuals within a large population. We avail ourselves to a procedure that can test a group of multiple individuals, with the test result coming out positive iff at least one individual in the group is infected. With all tests conducted in parallel, what is the least number of tests required to identify the status of all individuals? In a recent test design [Aldridge et al. 2016] the individuals are assigned to test groups randomly, with every individual joining an equal number of groups. We pinpoint the sharp threshold for the number of tests required in this randomised design so that it is information-theoretically possible to infer the infection status of every individual. Moreover, we analyse two efficient inference algorithms. These results settle conjectures from [Aldridge et al. 2014, Johnson et al. 2019].
169 - Reginald D. Smith 2011
The key findings of classical population genetics are derived using a framework based on information theory using the entropies of the allele frequency distribution as a basis. The common results for drift, mutation, selection, and gene flow will be rewritten both in terms of information theoretic measurements and used to draw the classic conclusions for balance conditions and common features of one locus dynamics. Linkage disequilibrium will also be discussed including the relationship between mutual information and r^2 and a simple model of hitchhiking.
This report describes metrics for the evaluation of the effectiveness of segment-based retrieval based on existing binary information retrieval metrics. This metrics are described in the context of a task for the hyperlinking of video segments. This evaluation approach re-uses existing evaluation measures from the standard Cranfield evaluation paradigm. Our adaptation approach can in principle be used with any kind of effectiveness measure that uses binary relevance, and for other segment-baed retrieval tasks. In our video hyperlinking setting, we use precision at a cut-off rank n and mean average precision.
There is a growing interest in analysing the freshness of data in networked systems. Age of Information (AoI) has emerged as a popular metric to quantify this freshness at a given destination. There has been a significant research effort in optimizing this metric in communication and networking systems under different settings. In contrast to previous works, we are interested in a fundamental question, what is the minimum achievable AoI in any single-server-single-source queuing system for a given service-time distribution? To address this question, we study a problem of optimizing AoI under service preemptions. Our main result is on the characterization of the minimum achievable average peak AoI (PAoI). We obtain this result by showing that a fixed-threshold policy is optimal in the set of all randomized-threshold causal policies. We use the characterization to provide necessary and sufficient conditions for the service-time distributions under which preemptions are beneficial.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا