Do you want to publish a course? Click here

Nuclear Effects in Neutrino Structure Functions

120   0   0.0 ( 0 )
 Added by Sergey Kulagin
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We discuss calculation of nuclear corrections to the structure functions for the deep-inelastic scattering of muon and (anti)neutrino. Our approach includes a QCD description of the nucleon structure functions as well as the treatment of Fermi motion and nuclear binding, off-shell correction to bound nucleon structure functions, nuclear pion excess and nuclear shadowing. We emphasize the dependence of nuclear effects on the type and C-parity of (anti)neutrino structure functions. We also examine the interplay between different nuclear effects in the Adler and the Gross-Llewellyn-Smith sum rules for nuclei.



rate research

Read More

165 - Maria B. Barbaro 2009
An accurate description of the nuclear response functions for neutrino scattering in the Gev region is essential for the interpretation of present and future neutrino oscillation experiments. Due to the close similarity of electromagnetic and weak scattering processes, we will review the status of the scaling approach and of relativistic modeling for the inclusive electron scattering response functions in the quasielastic and $Delta$-resonance regions. In particular, recent studies have been focused on scaling violations and the degree to which these imply modifications of existing predictions for neutrino reactions. We will discuss sources and magnitude of such violations, emphasizing similarities and differences between electron and neutrino reactions.
Recent experiments performed on inclusive electron scattering from nuclear targets have measured the nucleon electromagnetic structure functions $F_1(x,Q^2)$, $F_2(x,Q^2)$ and $F_L(x,Q^2)$ in $^{12}C$, $^{27}Al$, $^{56}Fe$ and $^{64}Cu$ nuclei. The measurements have been done in the energy region of $1 GeV^2 < W^2 < 4 GeV^2$ and $Q^2$ region of $0.5 GeV^2 < Q^2 < 4.5 GeV^2$. We have calculated nuclear medium effects in these structure functions arising due to the Fermi motion, binding energy, nucleon correlations, mesonic contributions from pion and rho mesons and shadowing effects. The calculations are performed in a local density approximation using relativistic nucleon spectral function which include nucleon correlations. The numerical results are compared with the recent experimental data from JLab and also with some earlier experiments.
253 - Chiara Maieron 2006
Nuclear model effects in neutrino-nucleus quasielastic scattering are studied within the distorted wave impulse approximation, using a relativistic shell model to describe the nucleus, and comparing it with the relativistic Fermi gas. Both charged-current and neutral-current processes are considered and, for the neutral-current case, the uncertainties that nuclear effects may introduce in measurements of the axial strange form-factor of the nucleon are investigated.
The effects of the theoretical uncertainties in the description of neutrino-nucleus cross sections for supernova neutrino energies are investigated.
189 - Silvano Simula 1996
The production of slow nucleons in semi-inclusive deep inelastic electron scattering off nuclei, $A(e, eN)X$, is analyzed for kinematical conditions accessible at $HERA$ with the $HERMES$ detector. The sensitivity of the semi-inclusive cross section to possible medium-dependent modifications of the nucleon structure function is illustrated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا