Do you want to publish a course? Click here

Gravitational solitons and $C^0$ vacuum metrics in five-dimensional Lovelock gravity

118   0   0.0 ( 0 )
 Added by Steven Willison
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Junction conditions for vacuum solutions in five-dimensional Einstein-Gauss-Bonnet gravity are studied. We focus on those cases where two spherically symmetric regions of space-time are joined in such a way that the induced stress tensor on the junction surface vanishes. So a spherical vacuum shell, containing no matter, arises as a boundary between two regions of the space-time. A general analysis is given of solutions that can be constructed by this method of geometric surgery. Such solutions are a generalized kind of spherically symmetric empty space solutions, described by metric functions of the class $C^0$. New global structures arise with surprising features. In particular, we show that vacuum spherically symmetric wormholes do exist in this theory. These can be regarded as gravitational solitons, which connect two asymptotically (Anti) de-Sitter spaces with different masses and/or different effective cosmological constants. We prove the existence of both static and dynamical solutions and discuss their (in)stability under perturbations that preserve the symmetry. This leads us to discuss a new type of instability that arises in five-dimensional Lovelock theory of gravity for certain values of the coupling of the Gauss-Bonnet term. The issues of existence and uniqueness of solutions and determinism in the dynamical evolution are also discussed.



rate research

Read More

A four-dimensional regularization of Lovelock-Lanczos gravity up to an arbitrary curvature order is considered. We show that Lovelock-Lanczos terms can provide a non-trivial contribution to the Einstein field equations in four dimensions, for spherically symmetric and Friedmann-Lema^{i}tre-Robertson-Walker spacetimes, as well as at first order in perturbation theory around (anti) de Sitter vacua. We will discuss the cosmological and black hole solutions arising from these theories, focusing on the presence of attractors and their stability. Although curvature singularities persist for any finite number of Lovelock terms, it is shown that they disappear in the non-perturbative limit of a theory with a unique vacuum.
We study the Hamiltonian dynamics of a five-dimensional Chern-Simons theory for the gauge algebra $C_5$ of Izaurieta, Rodriguez and Salgado, the so-called S$_H$-expansion of the 5D (anti-)de Sitter algebra (a)ds, based on the cyclic group $mathbb{Z}_4$. The theory consists of a 1-form field containing the (a)ds gravitation variables and 1-form field transforming in the adjoint representation of (a)ds. The gravitational part of the action necessarily contains a term quadratic in the curvature, beyond the Einstein-Hilbert and cosmological terms, for any choice of the two independent coupling constants. The total action is also invariant under a new local symmetry, called crossed diffeomorphisms, beyond the usual space-time diffeomorphisms. The number of physical degrees of freedom is computed. The theory is shown to be generic in the sense of Ba~nados, Garay and Henneaux, i.e., the constraint associated to the time diffeomorphisms is not independent from the other constraints.
We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchav{r} in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-Sharp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher-dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes.
We give a higher even dimensional extension of vacuum colliding gravitational plane waves with the combinations of collinear and non-collinear polarized four-dimensional metric. The singularity structure of space-time depends on the parameters of the solution.
95 - Jani Kastikainen 2019
We study how the standard definitions of ADM mass and Brown-York quasi-local energy generalize to pure Lovelock gravity. The quasi-local energy is renormalized using the background subtraction prescription and we consider its limit for large surfaces. We find that the large surface limit vanishes for asymptotically flat fall-off conditions except in Einstein gravity. This problem is avoided by focusing on the variation of the quasi-local energy which correctly approaches the variation of the ADM mass for large surfaces. As a result, we obtain a new simple formula for the ADM mass in pure Lovelock gravity. We apply the formula to spherically symmetric geometries verifying previous calculations in the literature. We also revisit asymptotically AdS geometries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا