Do you want to publish a course? Click here

High-excitation OH and H_2O lines in Markarian 231: the molecular signatures of compact far-infrared continuum sources

137   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ISO/LWS far-infrared spectrum of the ultraluminous galaxy Mkn 231 shows OH and H_2O lines in absorption from energy levels up to 300 K above the ground state, and emission in the [O I] 63 micron and [C II] 158 micron lines. Our analysis shows that OH and H_2O are radiatively pumped by the far-infrared continuum emission of the galaxy. The absorptions in the high-excitation lines require high far-infrared radiation densities, allowing us to constrain the properties of the underlying continuum source. The bulk of the far-infrared continuum arises from a warm (T_dust=70-100 K), optically thick (tau_100micron=1-2) medium of effective diameter 200-400 pc. In our best-fit model of total luminosity L_IR, the observed OH and H2O high-lying lines arise from a luminous (L/L_IR~0.56) region with radius ~100 pc. The high surface brightness of this component suggests that its infrared emission is dominated by the AGN. The derived column densities N(OH)>~10^{17} cm^{-2} and N(H_2O)>~6x10^{16} cm^{-2} may indicate XDR chemistry, although significant starburst chemistry cannot be ruled out. The lower-lying OH, [C II] 158 micron, and [O I] 63 micron lines arise from a more extended (~350 pc) starburst region. We show that the [C II] deficit in Mkn 231 is compatible with a high average abundance of C+ because of an extreme overall luminosity to gas mass ratio. Therefore, a [C II] deficit may indicate a significant contribution to the luminosity by an AGN, and/or by extremely efficient star formation.



rate research

Read More

The oxygen-bearing molecular ions OH+, H2O+, and H3O+ are key species that probe the ionization rate of (partially) molecular gas that is ionized by X-rays and cosmic rays permeating the interstellar medium. We report Herschel far-infrared and submillimeter spectroscopic observations of OH+ in Mrk 231, showing both ground-state P-Cygni profiles, and excited line profiles with blueshifted absorption wings extending up to ~1000 km s^{-1}. In addition, OH+ probes an excited component peaking at central velocities, likely arising from the torus probed by the OH centimeter-wave megamaser. Four lines of H2O+ are also detected at systemic velocities, but H3O+ is undetected. Based on our earlier OH studies, we estimate an abundance ratio of OH/OH+~5-10 for the outflowing components and ~20 for the torus, and an OH+ abundance relative to H nuclei of ~>10^{-7}. We also find high OH+/H2O+ and OH+/H3O+ ratios, both are ~>4 in the torus and ~>10-20 in the outflowing gas components. Chemical models indicate that these high OH+ abundances relative to OH, H2O+, and H3O+ are characteristic of gas with a high ionization rate per unit density, zeta/n_H~(1-5)x10^{-17} cm^3 s^{-1} and ~(1-2)x10^{-16} cm^3 s^{-1} for the above components, respectively, and an ionization rate of zeta~(0.5-2)x10^{-12} s^{-1}. X-rays appear to be unable to explain the inferred ionization rate, and thus we suggest that low-energy (10-400 MeV) cosmic-rays are primarily responsible for the ionization with dot{M}_{CR}~0.01 M_{sun} yr^{-1} and dot{E}_{CR}~10^{44} erg s^{-1}, the latter corresponding to 1% of the AGN luminosity and similar to the energetics of the molecular outflow. We suggest that cosmic-rays accelerated in the forward shock associated with the molecular outflow are responsible for the ionization, as they diffuse through the outflowing molecular phase downstream.
We present MERLIN observations of OH maser and radio continuum emission from the Ultra Luminous IR Galaxy Markarian 231. The 1665- and 1667-MHz transitions have a combined velocity extent of 720 km/s and show a similar position-velocity structure including a gradient of 1.7 km/s/pc from NW to SE along the 420-pc major axis, steeper in the inner few tens of pc. The maser distribution is modelled as a torus rotating about an axis inclined at ~45deg. We estimate the enclosed mass density to be 320(90) Msun in a flattened distribution, including a central unresolved mass of </=8E+06 Msun. All the maser emission is projected against a region with a radio continuum brightness temperature >/=1E+05 K, giving a maser gain of </=2.2. The 1667:1665-MHz line ratio is close to the LTE ratio of 1.8 consistent with radiatively pumped, unsaturated masers. The size of individual masing regions is in the range 0.25-4 pc with a covering factor close to unity. There are no very bright compact masers, in contrast to galaxies such as the Seyfert 2 Markarian 273 where the masing torus is viewed nearer edge-on. The comparatively modest maser amplification seen from Markarian 231 is consistent with its classification as a Seyfert 1. Most of the radio continuum emission on 50-500 pc scales is probably of starburst origin but the compact peak is 0.4 per cent polarized by a magnetic field running north-south, similar to the jet direction on these scales. There is no close correlation between maser and continuum intensity. Comparisons with other data show that the jet changes direction close the nucleus and suggest that the sub-kpc disc hosting the masers and starburst activity is severely warped.
We report on the Herschel/PACS observations of OH in Mrk 231, with detections in 9 doublets observed within the PACS range, and present radiative transfer models for the outflowing OH. Signatures of outflowing gas are found in up to 6 OH doublets with different excitation requirements. At least two outflowing components are identified, one with OH radiatively excited, and the other with low excitation, presumably spatially extended. Particularly prominent, the blue wing of the absorption detected in the in-ladder 2Pi_{3/2} J=9/2-7/2 OH doublet at 65 um, with E_lower=290 K, indicates that the excited outflowing gas is generated in a compact and warm (circum)nuclear region. Because the excited, outflowing OH gas in Mrk 231 is associated with the warm, far-IR continuum source, it is likely more compact (diameter of 200-300 pc) than that probed by CO and HCN. Nevertheless, its mass-outflow rate per unit of solid angle as inferred from OH is similar to that previously derived from CO, >~70x(2.5x10^{-6}/X_{OH}) Msun yr^{-1} sr^{-1}, where X_{OH} is the OH abundance relative to H nuclei. In spherical symmetry, this would correspond to >~850x(2.5x10^{-6}/X_{OH}) Msun yr^{-1}, though significant collimation is inferred from the line profiles. The momentum flux of the excited component attains ~15 L_{AGN}/c, with an OH column density of (1.5-3)x10^{17} cm^-2 and a mechanical luminosity of ~10^{11} Lsun. The detection of very excited OH peaking at central velocities indicates the presence of a nuclear reservoir of gas rich in OH, plausibly the 130-pc scale circumnuclear torus previously detected in OH megamaser emission, that may be feeding the outflow. An exceptional ^{18}OH enhancement, with OH/^{18}OH<~30 at both central and blueshifted velocities, is likely the result of interstellar-medium processing by recent starburst/SNe activity.
We report the results from a 2011 Suzaku observation of the nearby low-ionization BAL quasar/ULIRG Markarian 231. These data reveal that the X-ray spectrum has undergone a large variation from the 2001 XMM-Newton and BeppoSAX observations. We interpret this finding according to a scenario whereby the X-ray continuum source is obscured by a two-component partial-covering absorber with NH ~10^22 and ~10^24 cm^-2, respectively. The observed spectral change is mostly explained by a progressive appearance of the primary continuum at <10 keV due to the decrease of the covering fraction of the denser absorption component. The properties of the X-ray obscuration in Mrk 231 match well with those of the X-ray shielding gas predicted by the theoretical models for an efficient radiatively-driven acceleration of the BAL wind. In particular, the X-ray absorber might be located at the extreme base of the outflow. We measure a 2-10 keV luminosity of L(2-10) = 3.3 x 10^43 erg s^-1 for the 2011 data set, i.e. an increase of 30% with respect to the 2001 value.
We present excitation temperatures $T_{ex}$ for the OH 18-cm main lines at 1665 and 1667 MHz measured directly in front of the W5 star-forming region, using observations from the Green Bank Telescope and the Very Large Array. We find unequivocally that $T_{ex}$ at 1665 MHz is greater than $T_{ex}$ at 1667 MHz. Our method exploits variations in the continuum emission from W5, and the fact that the continuum brightness temperatures $T_C$ in this nebula are close to the excitation temperatures of the OH lines in the foreground gas. The result is that an OH line can appear in emission in one location and in absorption in a neighboring location, and the value of $T_C$ where the profiles switch from emission to absorption indicates $T_{ex}$. Absolute measurements of $T_{ex}$ for the main lines were subject to greater uncertainty because of unknown effects of geometry of the OH features. We also employed the traditional expected profile method for comparison with our continuum background method, and found that the continuum background method provided more precise results, and was the one to definitively show the $T_{ex}$ difference. Our best estimate values are: $T^{65}_{ex} = 6.0 pm 0.5$ K, $T^{67}_{ex} = 5.1 pm 0.2$ K, and $T^{65}_{ex} - T^{67}_{ex} = 0.9 pm 0.5$ K. The $T_{ex}$ values we have measured for the ISM in front of W5 are similar to those found in the quiescent ISM, indicating that proximity to massive star-forming regions does not generally result in widespread anomalous excitation of OH emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا