Do you want to publish a course? Click here

The defect of Fano 3-folds

167   0   0.0 ( 0 )
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

This paper studies the defect of terminal Gorenstein Fano 3 folds. I determine a bound on the defect of terminal Gorenstein Fano 3-folds of Picard rank 1 that do not contain a plane. I give a general bound for quartic 3-folds and indicate how to study the defect of terminal Gorenstein Fano 3-folds with Picard rank 1 that contain a plane.



rate research

Read More

We compute the Hochschild-Kostant-Rosenberg decomposition of the Hochschild cohomology of Fano 3-folds. This is the first step in understanding the non-trivial Gerstenhaber algebra structure, and yields some initial insights in the classification of Poisson structures on Fano 3-folds of higher Picard rank.
We prove a Bogomolov-Gieseker type inequality for the third Chern characters of stable sheaves on Calabi-Yau 3-folds and a large class of Fano 3-folds with given rank and first and second Chern classes. The proof uses the spreading-out technique, vanishings from the tilt-stability conditions, and Langers estimation theorem of the global sections of torsion free sheaves. In particular, the result implies that the conjectural sufficient conditions on the Chern numbers for the existence of stable sheaves on a Calabi-Yau 3-fold by Douglas-Reinbacher-Yau needs to be modified.
We construct some new deformation families of four-dimensional Fano manifolds of index $1$ in some known classes of Gorenstein formats. These families have explicit descriptions in terms of equations, defining their image under the anti-canonical embedding in some weighted projective space. The constructed families have relatively smaller anti-canonical degrees than most other known families of smooth Fano 4-folds.
In this thesis, I determine a bound on the defect of terminal Gorenstein quartic 3-folds. More generally, I study the defect of terminal Gorenstein Fano 3-folds of Picard rank 1 and genus at least 3. I state a geometric motivation of non Q-factoriality in the case of quartics.
Let $Xsubset mathbb{P}^4$ be a terminal factorial quartic $3$-fold. If $X$ is non-singular, $X$ is emph{birationally rigid}, i.e. the classical MMP on any terminal $mathbb{Q}$-factorial projective variety $Z$ birational to $X$ always terminates with $X$. This no longer holds when $X$ is singular, but very few examples of non-rigid factorial quartics are known. In this article, we first bound the local analytic type of singularities that may occur on a terminal factorial quartic hypersurface $Xsubset mathbb{P}^4$. A singular point on such a hypersurface is either of type $cA_n$ ($ngeq 1$), or of type $cD_m$ ($mgeq 4$), or of type $cE_6, cE_7$ or $cE_8$. We first show that if $(P in X)$ is of type $cA_n$, $n$ is at most $7$, and if $(P in X)$ is of type $cD_m$, $m$ is at most $8$. We then construct examples of non-rigid factorial quartic hypersurfaces whose singular loci consist (a) of a single point of type $cA_n$ for $2leq nleq 7$ (b) of a single point of type $cD_m$ for $m= 4$ or $5$ and (c) of a single point of type $cE_k$ for $k=6,7$ or $8$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا