Do you want to publish a course? Click here

Preservation of network Degree Distributions from non-uniform failures

132   0   0.0 ( 0 )
 Added by Gourab Ghoshal
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

There has been a considerable amount of interest in recent years on the robustness of networks to failures. Many previous studies have concentrated on the effects of node and edge removals on the connectivity structure of a static network; the networks are considered to be static in the sense that no compensatory measures are allowed for recovery of the original structure. Real world networks such as the world wide web, however, are not static and experience a considerable amount of turnover, where nodes and edges are both added and deleted. Considering degree-based node removals, we examine the possibility of preserving networks from these types of disruptions. We recover the original degree distribution by allowing the network to react to the attack by introducing new nodes and attaching their edges via specially tailored schemes. We focus particularly on the case of non-uniform failures, a subject that has received little attention in the context of evolving networks. Using a combination of analytical techniques and numerical simulations, we demonstrate how to preserve the exact degree distribution of the studied networks from various forms of attack.



rate research

Read More

We present a simple model of network growth and solve it by writing down the dynamic equations for its macroscopic characteristics like the degree distribution and degree correlations. This allows us to study carefully the percolation transition using a generating functions theory. The model considers a network with a fixed number of nodes wherein links are introduced using degree-dependent linking probabilities $p_k$. To illustrate the techniques and support our findings using Monte-Carlo simulations, we introduce the exemplary linking rule $p_k$ proportional to $k^{-alpha}$, with $alpha$ between -1 and plus infinity. This parameter may be used to interpolate between different regimes. For negative $alpha$, links are most likely attached to high-degree nodes. On the other hand, in case $alpha>0$, nodes with low degrees are connected and the model asymptotically approaches a process undergoing explosive percolation.
The paper is being withdrawn since the authors felt that the submission is a little premature after a careful reading by some of the experts in this field.
We investigate a class of stochastic fragmentation processes involving stable and unstable fragments. We solve analytically for the fragment length density and find that a generic algebraic divergence characterizes its small-size tail. Furthermore, the entire range of acceptable values of decay exponent consistent with the length conservation can be realized. We show that the stochastic fragmentation process is non-self-averaging as moments exhibit significant sample-to-sample fluctuations. Additionally, we find that the distributions of the moments and of extremal characteristics possess an infinite set of progressively weaker singularities.
We study a quantum spin-1/2 chain that is dual to the canonical problem of non-equilibrium Kawasaki dynamics of a classical Ising chain coupled to a thermal bath. The Hamiltonian is obtained for the general disordered case with non-uniform Ising couplings. The quantum spin chain (dubbed Ising-Kawasaki) is stoquastic, and depends on the Ising couplings normalized by the baths temperature. We give its exact ground states. Proceeding with uniform couplings, we study the one- and two-magnon excitations. Solutions for the latter are derived via a Bethe Ansatz scheme. In the antiferromagnetic regime, the two-magnon branch states show intricate behavior, especially regarding their hybridization with the continuum. We find that that the gapless chain hosts multiple dynamics at low energy as seen through the presence of multiple dynamical critical exponents. Finally, we analyze the full energy level spacing distribution as a function of the Ising coupling. We conclude that the system is non-integrable for generic parameters, or equivalently, that the corresponding non-equilibrium classical dynamics are ergodic.
The interplay between quantum fluctuations and disorder is investigated in a spin-glass model, in the presence of a uniform transverse field $Gamma$, and a longitudinal random field following a Gaussian distribution with width $Delta$. The model is studied through the replica formalism. This study is motivated by experimental investigations on the LiHo$_x$Y$_{1-x}$F$_4$ compound, where the application of a transverse magnetic field yields rather intriguing effects, particularly related to the behavior of the nonlinear magnetic susceptibility $chi_3$, which have led to a considerable experimental and theoretical debate. We analyzed two situations, namely, $Delta$ and $Gamma$ considered as independent, as well as these two quantities related as proposed recently by some authors. In both cases, a spin-glass phase transition is found at a temperature $T_f$; moreover, $T_f$ decreases by increasing $Gamma$ towards a quantum critical point at zero temperature. The situation where $Delta$ and $Gamma$ are related appears to reproduce better the experimental observations on the LiHo$_x$Y$_{1-x}$F$_4$ compound, with the theoretical results coinciding qualitatively with measurements of the nonlinear susceptibility. In this later case, by increasing $Gamma$, $chi_3$ becomes progressively rounded, presenting a maximum at a temperature $T^*$ ($T^*>T_f$). Moreover, we also show that the random field is the main responsible for the smearing of the nonlinear susceptibility, acting significantly inside the paramagnetic phase, leading to two regimes delimited by the temperature $T^*$, one for $T_f<T<T^*$, and another one for $T>T^*$. It is argued that the conventional paramagnetic state corresponds to $T>T^*$, whereas the temperature region $T_f<T<T^*$ may be characterized by a rather unusual dynamics, possibly including Griffiths singularities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا