Do you want to publish a course? Click here

Atmospheric Parameters of Field L and T Dwarfs

101   0   0.0 ( 0 )
 Added by Michael Cushing
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the 0.95-14.5 micron spectral energy distributions of nine field ultracool dwarfs with spectral types ranging from L1 to T4.5. Effective temperatures, gravities, and condensate cloud sedimentation efficiencies are derived by comparing the data to synthetic spectra computed from atmospheric models that self-consistently include the formation of condensate clouds. Derived effective temperatures decrease steadily through the L1 to T4.5 spectral types and we confirm that the effective temperatures of ultracool dwarfs at the L/T transition are nearly constant, decreasing by only ~200 K from spectral types L7.5 to T4.5. The two objects in our sample with very red J-Ks colors are best fitted with synthetic spectra that have thick clouds which hints at a possible correlation between the near-infrared colors of L dwarfs and the condensate cloud properties. The fits to the two T dwarfs in our sample (T2 and T4.5) also suggest that the clouds become thinner in this spectral class, in agreement with previous studies. Restricting the fits to narrower wavelength ranges (i.e., individual photometric bands) almost always yields excellent agreement between the data and models. Limitations in our knowledge of the opacities of key absorbers such as FeH, VO, and CH4 at certain wavelengths remain obvious, however. The effective temperatures obtained by fitting the narrower wavelength ranges can show a large scatter compared to the values derived by fitting the full spectral energy distributions; deviations are typically ~200 K and in the worst cases, up to 700 K.



rate research

Read More

(Abridged) We have obtained radial velocities of a sample of 18 ultracool dwarfs (M6.5-T8) using high-resolution, near-infrared spectra obtained with NIRSPEC and the Keck II telescope. We have confirmed that the radial velocity of Gl 570 D is coincident with that of the K-type primary star Gl 570 A, thus providing additional support for their true companionship. The presence of planetary-mass companions around 2MASS J05591914-1404488 (T4.5V) has been analyzed using five NIRSPEC radial velocity measurements obtained over a period of 4.37 yr. We have computed UVW space motions for a total of 21 L and T dwarfs within 20 pc of the Sun. This population shows UVW velocities that nicely overlap the typical kinematics of solar to M-type stars within the same spatial volume. However, the mean Galactic (44.2 km/s) and tangential (36.5 km/s) velocities of the L and T dwarfs appear to be smaller than those of G to M stars. A significant fraction (~40%) of the L and T dwarfs lies near the Hyades moving group (0.4-2 Gyr), which contrasts with the 10-12% found for earlier-type stellar neighbors. Additionally, the distributions of all three UVW components (sigma_{UVW} = 30.2, 16.5, 15.8 km/s) and the distributions of the total Galactic (sigma_{v_tot} = 19.1 km/s) and tangential (sigma_{v_t} = 17.6 km/s) velocities derived for the L and T dwarf sample are narrower than those measured for nearby G, K, and M-type stars, but similar to the dispersions obtained for F stars. This suggests that, in the solar neighborhood, the L- and T-type ultracool dwarfs in our sample (including brown dwarfs) is kinematically younger than solar-type to early M stars with likely ages in the interval 0.5-4 Gyr.
We present a 0.6-4.1 micron spectroscopic sequence of M, L, and T dwarfs. The spectra have R~2000 from 0.9 to 2.4 microns and R=2500-200 from 2.9 to 4.1 microns. These new data nearly double the number of L and T dwarfs that have reported L-band spectra. The near-infrared spectra are combined with previously published red-optical spectra to extend the wavelength coverage to ~0.6 microns. Prominent atomic and molecular absorption features are identified including neutral lines of Al, Fe, Mg, Ca, Ti, Na, and K and 19 new weak CH_4 absorption features in the H-band spectra of mid- to late-type T dwarfs. In addition, we detect for the first time the 0-0 band of the A ^4Pi - X ^4Sigma^- transition of VO at ~1.06 microns in the spectra of L dwarfs and the P and R branches of the u_3 band of CH_4 in the spectrum of a T dwarf. The equivalent widths of the refractory atomic features all decrease with increasing spectral type and are absent by a spectral type of ~L0, except for the 1.189 micron Fe I line which persists to at least ~L3. We compute the bolometric luminosities of the dwarfs in our sample with measured parallaxes and find good agreement with previously published results that use L-band photometry to account for the flux emitted from 2.5 to 3.6 microns. Finally, 2MASS J2224381-0158521 (L4.5) has an anomalously red spectrum and the strongest Delta u=+2 CO bands in our sample. This may be indicative of unusually thick condensate clouds and/or low surface gravity.
Brown dwarf spectra are rich in information revealing of the chemical and physical processes operating in their atmospheres. We apply a recently developed atmospheric retrieval tool to an ensemble of late T-dwarf (600-800K) near infrared spectra. With these spectra we are able to place direct constraints the molecular abundances of H$_2$O, CH$_4$, CO, CO$_2$, NH$_3$, H$_2$S, and Na+K, gravity, thermal structure (and effective temperature), photometric radius, and cloud optical depths. We find that ammonia, water, methane, and the alkali metals are present and well constrained in all 11 objects. From the abundance constraints we find no significant trend in the water, methane, or ammonia abundances with temperature, but find a very strong ($>$25$sigma$) increasing trend in the alkali metal abundances with effective temperature, indicative of alkali rainout. We also find little evidence for optically thick clouds. With the methane and water abundances, we derive the intrinsic atmospheric metallicity and carbon-to-oxygen ratios. We find in our sample, that metallicities are typically sub solar and carbon-to-oxygen ratios are somewhat super solar, different than expectations from the local stellar population. We also find that the retrieved vertical thermal profiles are consistent with radiative equilibrium over the photospheric regions. Finally, we find that our retrieved effective temperatures are lower than previous inferences for some objects and that our radii are larger than expectations from evolutionary models, possibly indicative of un-resolved binaries. This investigation and methodology represents a paradigm in linking spectra to the determination of the fundamental chemical and physical processes governing cool brown dwarf atmospheres.
In our effort to complete the census of low-mass stars and brown dwarfs in the immediate Solar Neighborhood, we present spectra, photometry, proper motions, and distance estimates for forty-two low-mass star and brown dwarf candidates discovered by the Wide-field Infrared Survey Explorer (WISE). We also present additional follow-up information on twelve candidates selected using WISE data but previously published elsewhere. The new discoveries include fifteen M dwarfs, seventeen L dwarfs, five T dwarfs, and five objects of other type. Among these discoveries is a newly identified unusually red L dwarf (WISE J223527.07+451140.9), four peculiar L dwarfs whose spectra are most readily explained as unresolved L+T binary systems, and a T9 dwarf (WISE J124309.61+844547.8). We also show that the recently discovered red L dwarf WISEP J004701.06+680352.1 (Gizis et al. 2012) may be a low-gravity object and hence young and potentially low mass (< 25 MJup).
100 - D. Saumon 2008
We present new evolution sequences for very low mass stars, brown dwarfs and giant planets and use them to explore a variety of influences on the evolution of these objects. We compare our results with previous work and discuss the causes of the differences and argue for the importance of the surface boundary condition provided by atmosphere models including clouds. The L- to T-type ultracool dwarf transition can be accommodated within the Ackerman & Marley (2001) cloud model by varying the cloud sedimentation parameter. We develop a simple model for the evolution across the L/T transition. By combining the evolution calculation and our atmosphere models, we generate colors and magnitudes of synthetic populations of ultracool dwarfs in the field and in galactic clusters. We focus on near infrared color- magnitude diagrams (CMDs) and on the nature of the ``second parameter that is responsible for the scatter of colors along the Teff sequence. Variations in metallicity and cloud parameters, unresolved binaries and possibly a relatively young population all play a role in defining the spread of brown dwarfs along the cooling sequence. We find that the transition from cloudy L dwarfs to cloudless T dwarfs slows down the evolution and causes a pile up of substellar objects in the transition region, in contradiction with previous studies. We apply the same model to the Pleiades brown dwarf sequence. Taken at face value, the Pleiades data suggest that the L/T transition occurs at lower Teff for lower gravity objects. The simulated populations of brown dwarfs also reveal that the phase of deuterium burning produces a distinctive feature in CMDs that should be detectable in ~50-100 Myr old clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا