Do you want to publish a course? Click here

Open Clusters in the log Age vs. M_V plane

100   0   0.0 ( 0 )
 Added by Michele Bellazzini
 Publication date 2007
  fields Physics
and research's language is English
 Authors M. Bellazzini




Ask ChatGPT about the research

In the log Age vs. integrated absolute magnitude (M_V) plane, the open clusters of the Milky Way form a well-defined band parallel to theoretical sequences decribing the passive evolution of Simple Stellar Populations and display a pretty sharp upper threshold in mass (M ~ 2X 10^4 M_{sun}) over a 4 dex range of ages.



rate research

Read More

We utilize the data from the Apache Point Observatory Galactic Evolution Experiment-2 (APOGEE-2) in the fourteenth data release of the Sloan Digital Sky Survey (SDSS) to calculate the line-of-sight velocity dispersion $sigma_{1D}$ of a sample of old open clusters (age larger than 100,Myr) selected from the Milky Way open cluster catalog of Kharchenko et al. (2013). Together with their $K_s$ band luminosity $L_{K_s}$, and the half-light radius $r_{h}$ of the most probable members, we find that these three parameters show significant pairwise correlations among each other. Moreover, a fundamental plane-{it like} relation among these parameters is found for the oldest open clusters (age older than 1,Gyr), $L_{K_s}proptosigma_{1D}^{0.82pm0.29}cdot r_h^{2.19pm0.52}$ with $rms sim, 0.31$,mag in the $K_s$ band absolute magnitude. The existence of this relation, which deviates significantly from the virial theorem prediction, implies that the dynamical structures of the old open clusters are quite similar, when survived from complex dynamical evolution to age older than 1 Gyr.
$Context$. Gaia Second Data Release provides precise astrometry and photometry for more than 1.3 billion sources. This catalog opens a new era concerning the characterization of open clusters and test stellar models, paving the way for a better understanding of the disc properties. $Aims$. The aim of the paper is to improve the knowledge of cluster parameters, using only the unprecedented quality of the Gaia photometry and astrometry. $Methods$. We make use of the membership determination based on the precise Gaia astrometry and photometry. We apply anautomated Bayesian tool, BASE-9, to fit stellar isochrones on the observed G, GBP, GRP magnitudes of the high probability member stars. $Results$. We derive parameters such as age, distance modulus and extinction for a sample of 269 open clusters, selecting only low reddening objects and discarding very young clusters, for which techniques other than isochrone-fitting are more suitable for estimating ages.
Context: Precise chemical abundances coupled with reliable ages are key ingredients to understand the chemical history of our Galaxy. Open Clusters (OCs) are useful for this purpose because they provide ages with good precision. Aims: The aim of this work is to investigate the relations of different chemical abundance ratios vs age traced by red clump (RC) stars in OCs. Methods: We analyze a large sample of 209 reliable members in 47 OCs with available high-resolution spectroscopy. We applied a differential line-by-line analysis to provide a comprehensive chemical study of 25 chemical species. This sample is among the largest samples of OCs homogeneously characterized in terms of atmospheric parameters, detailed chemistry, and ages. Results: In our metallicity range (-0.2<[M/H]<+0.2) we find that while most Fe-peak and alpha elements have flat dependence with age, the s-process elements show decreasing trends with increasing age with a remarkable knee at 1 Gyr. For Ba, Ce, Y, Mo and Zr we find a plateau at young ages (< 1 Gyr). We investigate the relations of all possible combinations among the computed chemical species with age. We find 19 combinations with significant slopes, including [Y/Mg] and [Y/Al]. The ratio [Ba/alpha] is the one with the most significant correlations found. Conclusions: We find that the [Y/Mg] relation found in the literature using Solar twins is compatible with the one found here in the Solar neighbourhood. The age-abundance relations show larger scatter for clusters at large distances (d>1 kpc) than for the Solar neighbourhood, particularly in the outer disk. We conclude that these relations need to be understood also in terms of the complexity of the chemical space introduced by the Galactic dynamics, on top of pure nucleosynthetic arguments, especially out of the local bubble.
We identify member stars of more than 90 open clusters in the LAMOST survey. With the method of Fang et al.(2018), the chromospheric activity (CA) indices logRCaK for 1091 member stars in 82 open clusters and logRH{alpha} for 1118 member stars in 83 open clusters are calculated. The relations between the average logRCaK, logRH{alpha} in each open cluster and its age are investigated in different Teff and [Fe/H] ranges. We find that CA starts to decrease slowly from logt = 6.70 to logt = 8.50, and then decreases rapidly until logt = 9.53. The trend becomes clearer for cooler stars. The quadratic functions between logR and logt with 4000K < Teff < 5500K are constructed, which can be used to roughly estimate ages of field stars with accuracy about 40% for logRCaK and 60% for logRH{alpha}.
Context. We present a reanalysis of the distribution of galaxies in the $log(langle Irangle_e)-log(R_e)$ plane under a new theoretical perspective. Aims. Using the data of the WINGS database and those of the Illustris simulation we will demonstrate that the origin of the observed distribution in this parameter space can be understood only by accepting a new interpretation of the $log(L)$-$log(sigma)$ relation Methods. We simulate the distribution of galaxies in the $log(langle Irangle_e)-log(R_e)$ plane starting from the new $L=L_0sigma^beta$ relation proposed by DOnofrio et al. (2020) and we discuss the physical mechanisms that are hidden in this empirical law. Results. The artificial distribution obtained assuming that beta spans either positive and negative values and that $L_0$ changes with $beta$, is perfectly superposed to the observational data, once it is postulated that the Zone of Exclusion (ZoE) is the limit of virialized and quenched objects. Conclusions. We have demonstrated that the distribution of galaxies in the $log(langle Irangle_e)-log(R_e)$ plane is not linked to the peculiar light profiles of the galaxies of different luminosity, but originate from the mass assembly history of galaxies, made of merging, star formation events, star evolution and quenching of the stellar population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا