Do you want to publish a course? Click here

Detection of strong activity in the eclipsing binary brown dwarf 2MASSJ05352184-0546085 - A possible explanation for the temperature reversal

103   0   0.0 ( 0 )
 Added by Ansgar Reiners
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show high resolution spectra of the eclipsing brown dwarf binary 2MASSJ05352184-0546085 taken at the two opposite radial velocity maxima. Comparisons of the TiO bands to model and template spectra are fully consistent with the temperatures previously derived for this system. In particular, the reversal of temperatures with mass - in which the higher-mass primary is cooler than its companion - is confirmed. We measure the projected rotation velocities of the compononents; the primary is rotating at least twice as rapidly as the secondary. At the two radial velocity maxima, Halpha emission lines of both components stick out to either sides of the Halpha central wavelength, which is dominated by nebula emission. This enables us to model the individual Halpha lines of the primary and the secondary. We find that the Halpha emission from the primary is at least 7 times stronger than the emission from the secondary. We conclude that the temperature reversal is very likely due to strong magnetic fields inhibiting convection on the primary.



rate research

Read More

177 - Rene Heller 2010
2MASSJ05352184-0546085 (2M0535-05) is the only known eclipsing brown dwarf (BD) binary, and so may serve as an important benchmark for models of BD formation and evolution. However, theoretical predictions of the systems properties seem inconsistent with observations: i. The more massive (primary) component is observed to be cooler than the less massive (secondary) one. ii. The secondary is more luminous (by roughly 10^{24} W) than expected. We study the impact of tidal heating to the energy budget of both components. We also compare various plausible tidal models to determine a range of predicted properties. We apply t
We present the JHKs light curves for the double-lined eclipsing binary 2MASS J05352184-0546085, in which both components are brown dwarfs. We analyze these light curves with the published Ic-band light curve and radial velocities to provide refined measurements of the systems physical parameters. The component masses and radii are here determined with an accuracy of ~6.5% and ~1.5%, respectively. We confirm the previous surprising finding that the primary brown dwarf has a cooler effective temperature than its companion. Next, we perform a detailed study of the variations in the out-of-eclipse phases of the light curves to ascertain the properties of any inhomogeneities on the surfaces of the brown dwarfs. Our analysis reveals two low-amplitude periodic signals, one attributable to the rotation of the primary (with a period of 3.293+/-0.001 d) and the other to that of the secondary (14.05+/-0.05 d). Finally, we explore the effects on the derived physical parameters of the system when spots are included in the modeling. The observed low-amplitude rotational modulations are well fit by cool spots covering a small fraction of their surfaces. To mimic the observed ~200 K suppression of the primarys temperature, our model requires that the primary possess a very large spot coverage fraction of ~65%. Altogether, a spot configuration in which the primary is heavily spotted while the secondary is lightly spotted can explain the apparent temperature reversal and can bring the temperatures of the brown dwarfs into agreement with the predictions of theoretical models.
We have observed the eclipsing, post-common envelope white dwarf-brown dwarf binary, SDSS141126.20+200911.1, in the near-IR with the HAWK-I imager, and present here the first direct detection of the dark side of an irradiated brown dwarf in the $H$ band, and a tentative detection in the $K_s$ band. Our analysis of the lightcurves and indicates that the brown dwarf is likely to have an effective temperature of 1300 K, which is not consistent with the effective temperature of 800 K suggested by its mass and radius. As the brown dwarf is already absorbing almost all the white dwarf emission in the $K_s$ band we suggest that this inconsistency may be due to the UV-irradiation from the white dwarf inducing an artificial brightening in the $K_s$ band, similar to that seen for the similar system WD0137-349B, suggesting this brightening may be characteristic of these UV-irradiated binaries.
We present the discovery of only the third brown dwarf known to eclipse a non-accreting white dwarf. Gaia parallax information and multi-colour photometry confirm that the white dwarf is cool (9950$pm$150K) and has a low mass (0.45$pm$0.05~MSun), and spectra and lightcurves suggest the brown dwarf has a mass of 0.067 $pm$0.006 MSun (70 MJup) and a spectral type of L5 $pm$1. The kinematics of the system show that the binary is likely to be a member of the thick disk and therefore at least 5 Gyr old. The high cadence lightcurves show that the brown dwarf is inflated, making it the first brown dwarf in an eclipsing white dwarf-brown dwarf binary to be so.
We report the discovery of an eclipsing companion to NLTT 41135, a nearby M5 dwarf that was already known to have a wider, slightly more massive common proper motion companion, NLTT 41136, at 2.4 arcsec separation. Analysis of combined-light and radial velocity curves of the system indicates that NLTT 41135B is a 31-34 +/- 3 MJup brown dwarf (where the range depends on the unknown metallicity of the host star) on a circular orbit. The visual M-dwarf pair appears to be physically bound, so the system forms a hierarchical triple, with masses approximately in the ratio 8:6:1. The eclipses are grazing, preventing an unambiguous measurement of the secondary radius, but follow-up observations of the secondary eclipse (e.g. with the James Webb Space Telescope) could permit measurements of the surface brightness ratio between the two objects, and thus place constraints on models of brown dwarfs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا