Do you want to publish a course? Click here

Superfluidity and phase transitions in a resonant Bose gas

348   0   0.0 ( 0 )
 Added by Leo Radzihovsky
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The atomic Bose gas is studied across a Feshbach resonance, mapping out its phase diagram, and computing its thermodynamics and excitation spectra. It is shown that such a degenerate gas admits two distinct atomic and molecular superfluid phases, with the latter distinguished by the absence of atomic off-diagonal long-range order, gapped atomic excitations, and deconfined atomic pi-vortices. The properties of the molecular superfluid are explored, and it is shown that across a Feshbach resonance it undergoes a quantum Ising transition to the atomic superfluid, where both atoms and molecules are condensed. In addition to its distinct thermodynamic signatures and deconfined half-vortices, in a trap a molecular superfluid should be identifiable by the absence of an atomic condensate peak and the presence of a molecular one.



rate research

Read More

Using large scale Monte Carlo simulations on a uniformly frustrated 3DXY model, we report a first order vortex lattice melting transition in clean, isotropic extreme type-II $kappa to infty$ superconductors. This work clarifies an important issue: the unpinned vortex liquid is always incoherent with no phase coherence in any directions for all anisotropies. Previous claims of a disentangled vortex liquid for isotropic superconductors based on simulations, are due to finite size effects. We explicitly show that the effective vortex-line tension vanishes precisely at the superconducting phase transition in zero magnetic field. This loss of line tension is accompanied by an abrupt change in the connectivity of the vortex tangle across the superconductor. We also obtain results indicating that the connectivity of the vortex tangle changes in a similar way even in finite magnetic field, and suggest that this could also be associated with a genuine phase-transition.
Non-equilibrium aspects of the BCS model have fascinated physicists for decades, from the seminal works of Eliashberg to modern realizations in cold atom experiments. The latter scenarios have lead to a great deal of interest in the quench dynamics of fermions with pairing interactions. The recently introduced notion of a dynamical quantum phase transition is an attempt to classify the myriad of possible phenomena which can result in such far from equilibrium systems. These are defined as non-analytic points of the logarithm of the Loschmidt echo and are linked to oscillations in the dynamics a systems order parameter. In this work we analytically investigate the relation between DQPTs and oscillation of the superconducting order parameter in quenches of the BCS model. We find that each oscillation of the order parameter is accompanied by a DQPT which is first order in nature. We show this for a variety of initial states and furthermore find that when the order parameter attains a constant steady state then no DQPTS occur.
We investigate two solvable models for Bose-Einstein condensates and extract physical information by studying the structure of the solutions of their Bethe ansatz equations. A careful observation of these solutions for the ground state of both models, as we vary some parameters of the Hamiltonian, suggests a connection between the behavior of the roots of the Bethe ansatz equations and the physical behavior of the models. Then, by the use of standard techniques for approaching quantum phase transition - gap, entanglement and fidelity - we find that the change in the scenery in the roots of the Bethe ansatz equations is directly related to a quantum phase transition, thus providing an alternative method for its detection.
Quantum-degenerate Fermi gases provide a remarkable opportunity to study strongly interacting fermions. In contrast to other Fermi systems, such as superconductors, neutron stars or the quark-gluon plasma, these gases have low densities and their interactions can be precisely controlled over an enormous range. Here we report observations of vortices in such a gas that provide definitive evidence for superfluidity. By varying the pairing strength between two fermions near a Feshbach resonance, one can explore the crossover from a Bose-Einstein condensate (BEC) of molecules to a Bardeen-Cooper-Schrieffer (BCS) superfluid of loosely bound pairs whose size is comparable to, or even larger than, the interparticle spacing. The crossover realizes a novel form of high-T_C superfluidity and it may provide new insight for high-T_C superconductors. Previous experiments with Fermi gases have revealed condensation of fermion pairs. While these and other studies were consistent with predictions assuming superfluidity, the smoking gun for superfluid behavior has been elusive. Our observation of vortex lattices directly displays superfluid flow in a strongly interacting, rotating Fermi gas.
We determine the phase diagram and the momentum distribution for a one-dimensional Bose gas with repulsive short range interactions in the presence of a two-color lattice potential, with incommensurate ratio among the respective wave lengths, by using a combined numerical (DMRG) and analytical (bosonization) analysis. The system displays a delocalized (superfluid) phase at small values of the intensity of the secondary lattice V2 and a localized (Bose glass-like) phase at larger intensity V2. We analyze the localization transition as a function of the height V2 beyond the known limits of free and hard-core bosons. We find that weak repulsive interactions unfavor the localized phase i. e. they increase the critical value of V2 at which localization occurs. In the case of integer filling of the primary lattice, the phase diagram at fixed density displays, in addition to a transition from a superfluid to a Bose glass phase, a transition to a Mott-insulating state for not too large V2 and large repulsion. We also analyze the emergence of a Bose-glass phase by looking at the evolution of the Mott-insulator lobes when increasing V2. The Mott lobes shrink and disappear above a critical value of V2. Finally, we characterize the superfluid phase by the momentum distribution, and show that it displays a power-law decay at small momenta typical of Luttinger liquids, with an exponent depending on the combined effect of the interactions and of the secondary lattice. In addition, we observe two side peaks which are due to the diffraction of the Bose gas by the second lattice. This latter feature could be observed in current experiments as characteristics of pseudo-random Bose systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا