Do you want to publish a course? Click here

Discovering the Higgs Bosons of Minimal Supersymmetry with Tau Leptons and a Bottom Quark

93   0   0.0 ( 0 )
 Added by Chung Kao
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the prospects for the discovery at the CERN Large Hadron Collider or at the Fermilab Tevatron of neutral Higgs bosons through the channel where the Higgs are produced together with a single bottom quark and the Higgs decays into a pair of tau leptons, $bg to bphi^0 to btau^+tau^-, phi^0 = h^0, H^0, A^0$. We work within the framework of the minimal supersymmetric model. The dominant physics background from the production of $btau^+tau^-$, $jtau^+tau^-$ ($j = g, u, d, s, c$), $bbar{b}W^+W^-$, $W+2j$ and $Wbj$ is calculated with realistic acceptance cuts and efficiencies. Promising results are found for the CP-odd pseudoscalar ($A^0$) and the heavier CP-even scalar ($H^0$) Higgs bosons with masses up to one TeV.



rate research

Read More

We investigate the prospects for the discovery of a neutral Higgs boson produced with one bottom quark followed by Higgs decay into a pair of bottom quarks at the CERN Large Hadron Collider (LHC) and the Fermilab Tevatron Collider. We work within the framework of the minimal supersymmetric standard model. The dominant physics background is calculated with realistic acceptance cuts and efficiencies including the production of $bbbar{b}$, $bar{b}bbar{b}$, $jbbar{b}$ ($j = g, q, bar{q}$; $q = u, d, s, c$), $tbar{t} to bbar{b}jjell u$, and $tbar{t} to bbar{b}jjjj$. Promising results are found for the CP-odd pseudoscalar ($A^0$) and the heavier CP-even scalar ($H^0$) Higgs bosons with masses up to 800 GeV for the LHC with an integrated luminosity ($L$) of 30 fb$^{-1}$ and up to 1 TeV for $L =$ 300 fb$^{-1}$.
Possible realistic scenarios are investigated in the minimal supersymmetric standard model (MSSM) Higgs sector extended by dimension-six effective operators. The CP-odd Higgs boson with low mass around 30--90 GeV could be consistently introduced in the regime of large threshold corrections to the effective MSSM two-doublet Higgs potential.
Recently, it has been argued that various measures of SUSY naturalness-- electroweak, Higgs mass and EENZ/BG-- when applied consistently concur with one another and make very specific predictions for natural supersymmetric spectra. Highly natural spectra are characterized by light higgsinos with mass not too far from m_h and well-mixed but TeV-scale third generation squarks. We apply the unified naturalness measure to the case of heavy Higgs bosons A, H and H^pm. We find that their masses are bounded from above by naturalness depending on tan(beta): e.g. for 10% fine-tuning and tan(beta)~ 10, we expect m_A< 2.5 TeV whilst for 3% fine-tuning and tan(beta) as high as 50, then m_A< 8 TeV. Furthermore, the presence of light higgsinos seriously alters the heavy Higgs boson branching ratios, thus diminishing prospects for usual searches into Standard Model (SM) final states, while new discovery possibilities arise due to the supersymmetric decay modes. The heavy SUSY decay modes tend to be H, A, H^pm-> W, Z, or h+MET + soft tracks so that single heavy Higgs production is characterized by the presence of high p_T W, Z or h bosons plus missing E_T. These new heavy Higgs boson signatures seem to be challenging to extract from SM backgrounds.
We discuss the role that Higgs coupling measurements can play in differentiating supersymmetric extensions of the Standard Model. Fitting current LHC data to the Higgs couplings, we find that the likelihood fit shows a preference in the direction of suppressed (enhanced) bottom (top) quark couplings. In the minimal supersymmetric Standard Model, we demonstrate that for tan beta > 1, there is tension in achieving such fermion couplings due to the structure of the Higgs quartic couplings. In anticipation of interpreting supersymmetric models with future data, we determine a single straightforward condition required to access the region of coupling space preferred by current data.
A brief overview of the prospects for detecting the Higgs bosons of the Minimal Supersymmetric Model at future colliders is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا