The purpose of this paper is to present a complete and consistent list of the Feynman rules for the vertices of neutralinos and Higgs bosons in the Next-To-Minimal Supersymmetric Standard Model (NMSSM), which does not yet exist in the literature. The Feynman rules are derived from the full expression for the Lagrangian and the mass matrices of the neutralinos and Higgs bosons in the NMSSM. Some crucial differences between the vertex functions of the NMSSM and the Minimal Supersymmetric Standard Model (MSSM) are discussed.
In the Next--To--Minimal Supersymmetric Standard Model (NMSSM), the Higgs and neutralino/chargino sectors are strongly correlated by four common parameters at tree level. Therefore we analyze the experimental data from both the search for Higgs bosons as well as for neutralinos and charginos at LEP 100 in order to constrain the parameter space and the masses of the neutral Higgs particles in the NMSSM. We find that small singlet vacuum expectation values are ruled out, but a massless neutral Higgs scalar and pseudoscalar is not excluded for most of the parameter space of the NMSSM. Improved limits from the neutralino/chargino search at LEP 200, however, may lead to nonvanishing lower Higgs mass bounds.
The discovery of a 125 GeV Higgs boson at the Large Hadron Collider strongly motivates direct searches for additional Higgs bosons. In a type I two Higgs doublet model there is a large region of parameter space at $tanbeta > 5$ that is currently unconstrained experimentally. We show that the process $gg to H to A Z to ZZh$ can probe this region, and can be the discovery mode for an extended Higgs sector at the LHC. We analyze 9 promising decay modes for the $ZZh$ state, and we find that the most sensitive final states are $ellellellell bb$, $ellell jjbb$, $ellell u ugammagamma$ and $ellellellell +{}$missing energy.
Upon assuming the $B-L$ Supersymmetric Standard Model (BLSSM) as theoretical framework accommodating a multi-Higgs sector, we assess the scope of the High Luminosity Large Hadron Collider (HL-LHC) in accessing charged Higgs bosons ($H^pm$) produced in pairs from $Z$ decays. We show that, by pursuing both di-jet and tau-neutrino decays, several signals can be established for $H^pm$ masses ranging from about $M_{W}$ to above $m_t$ and $Z$ masses between 2.5 TeV and 3.5 TeV. The discovery can be attained, even in a background free environment in some cases, owing to the fact that the very massive resonating $Z$ ejects the charged Higgs bosons at very high transverse momentum, a kinematic region where any SM noise is hugely depleted.
The Higgs sector of the Minimal Supersymmetric Model (MSSM) is a CP-conserving two-Higgs doublet model that depends, at tree-level, on two Higgs sector parameters. In order to accurately determine the phenomenological implications of this model, one must include the effects of radiative corrections. The leading contributions to the one-loop radiative corrections are exhibited; large logarithms are resummed by the renormalization group method. Implications for Higgs phenomenology are briefly discussed.
John F. Gunion (Davis Institute for High Energy Physics
,Department ofn Physics
,U.C. Davis
.
(1992)
.
"Searching for the Minimal Supersymmetric Model Higgs Bosons"
.
J. Gunion
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا