Do you want to publish a course? Click here

SO(4) symmetry in the relativistic hydrogen atom

356   0   0.0 ( 0 )
 Added by Jing-Ling Chen
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the relativistic hydrogen atom possesses an SO(4) symmetry by introducing a kind of pseudo-spin vector operator. The same SO(4) symmetry is still preserved in the relativistic quantum system in presence of an U(1) monopolar vector potential as well as a nonabelian vector potential. Lamb shift and SO(4) symmetry breaking are also discussed.



rate research

Read More

241 - P. G. Castro , R. Kullock 2012
In this work we investigate the $q$-deformation of the $so(4)$ dynamical symmetry of the hydrogen atom using the theory of the quantum group $su_q(2)$. We derive the energy spectrum in a physically consistent manner and find a degeneracy breaking as well as a smaller Hilbert space. We point out that using the deformed Casimir as was done before leads to inconsistencies in the physical interpretation of the theory.
The non-relativistic hydrogen atom enjoys an accidental $SO(4)$ symmetry, that enlarges the rotational $SO(3)$ symmetry, by extending the angular momentum algebra with the Runge-Lenz vector. In the relativistic hydrogen atom the accidental symmetry is partially lifted. Due to the Johnson-Lippmann operator, which commutes with the Dirac Hamiltonian, some degeneracy remains. When the non-relativistic hydrogen atom is put in a spherical cavity of radius $R$ with perfectly reflecting Robin boundary conditions, characterized by a self-adjoint extension parameter $gamma$, in general the accidental $SO(4)$ symmetry is lifted. However, for $R = (l+1)(l+2) a$ (where $a$ is the Bohr radius and $l$ is the orbital angular momentum) some degeneracy remains when $gamma = infty$ or $gamma = frac{2}{R}$. In the relativistic case, we consider the most general spherically and parity invariant boundary condition, which is characterized by a self-adjoint extension parameter. In this case, the remnant accidental symmetry is always lifted in a finite volume. We also investigate the accidental symmetry in the context of the Pauli equation, which sheds light on the proper non-relativistic treatment including spin. In that case, again some degeneracy remains for specific values of $R$ and $gamma$.
The Dirac hydrogen atom with spin symmetry is shown has a SO(4) symmetry. The generators are derived, and the corresponding Casimir operator leads to the energy spectrum naturally. This type hydrogen atom is connected to a four-dimensional Dirac system with equal scalar and vector harmonic oscillator potential, by the Kustaanheimo-Stiefel transformation with a constraint.
In this paper we generalize the work of Lin, Lunin and Maldacena on the classification of 1/2-BPS M-theory solutions to a specific class of 1/4-BPS configurations. We are interested in the solutions of 11 dimensional supergravity with $SO(3)times SO(4)$ symmetry, and it is shown that such solutions are constructed over a one-parameter familiy of 4 dimensional almost Calabi-Yau spaces. Through analytic continuations we can obtain M-theory solutions having $AdS_2times S^3$ or $AdS_3times S^2$ factors. It is shown that our result is equivalent to the $AdS$ solutions which have been recently reported as the near-horizon geometry of M2 or M5-branes wrapped on 2 or 4-cycles in Calabi-Yau threefolds. We also discuss the hierarchy of M-theory bubbles with different number of supersymmetries.
The relation between motion in $-1/r$ and $r^{2}$ potentials, known since Newton, can be demonstrated by the substitution $rrightarrow r^{2}$ in the classical/quantum radial equations of the Kepler/Hydrogen problems versus the harmonic oscillator. This suggests a duality-type relationship between these systems. However, when both radial and angular components of these systems are included the possibility of a true duality seems to be remote. Indeed, investigations that explored and generalized Newtons radial relation, including algebraic approaches based on noncompact groups such as SO(4,2), have never exhibited a full duality consistent with Newtons. On the other hand, 2T-physics predicts a host of dualities between pairs of a huge set of systems that includes Newtons two systems. These dualities take the form of rather complicated canonical transformations that relate the full phase spaces of these respective systems in all directions. In this paper we focus on Newtons case by imposing his radial relation to find an appropriate basis for 2T-physics dualities, and then construct the full duality. Using the techniques of 2T-physics, we discuss the hidden symmetry of the actions (beyond the symmetry of Hamiltonians) for the Hydrogen atom in $D$-dimensions and the harmonic oscillator in $bar{D}$ dimensions. The symmetries lead us to find the one-to-one relation between the quantum states, including angular degrees of freedom, for specific values of $left( D,bar{D}right) $, and construct the explicit quantum canonical transformation in those special cases. We find that the canonical transformation has itself a hidden gauge symmetry that is crucial for the respective phase spaces to be dual even when $D eqbar{D}$. In this way we display the surprising beautiful symmetry of the full duality that generalizes Newtons radial duality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا