Do you want to publish a course? Click here

The SEGUE Stellar Parameter Pipeline. I. Description and Initial Validation Tests

158   0   0.0 ( 0 )
 Added by Timothy C. Beers
 Publication date 2007
  fields Physics
and research's language is English
 Authors Y.S. Lee




Ask ChatGPT about the research

We describe the development and implementation of the SEGUE (Sloan Extension for Galactic Exploration and Understanding) Stellar Parameter Pipeline (SSPP). The SSPP derives, using multiple techniques, radial velocities and the fundamental stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) for AFGK-type stars, based on medium-resolution spectroscopy and $ugriz$ photometry obtained during the course of the original Sloan Digital Sky Survey (SDSS-I) and its Galactic extension (SDSS-II/SEGUE). The SSPP also provides spectral classification for a much wider range of stars, including stars with temperatures outside of the window where atmospheric parameters can be estimated with the current approaches. This is Paper I in a series of papers on the SSPP; it provides an overview of the SSPP, and initial tests of its performance using multiple data sets. Random and systematic errors are critically examined for the current version of the SSPP, which has been used for the sixth public data release of the SDSS (DR-6).



rate research

Read More

147 - Y.S. Lee 2007
We validate the performance and accuracy of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) by comparing derived overall metallicities and radial velocities from selected likely members of three globular clusters (M 13, M 15, and M 2) and two open clusters (NGC 2420 and M 67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-I) and its first extension (SDSS-II/SEGUE) are used to determine stellar radial velocities and atmospheric parameter estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, we quantify the typical uncertainty of the SSPP values, sigma([Fe/H]) = 0.13 dex for stars in the range of 4500 K < Teff < 7500 K and 2.0 < log g < 5.0, at least over the metallicity interval spanned by the clusters studied (-2.3 < [Fe/H] < 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of the color-magnitude diagrams with stellar evolution models; we find satisfactory agreement. At present, the SSPP underestimates [Fe/H] for near-solar-metallicity stars, represented by members of M 67 in this study, by about 0.3 dex.
166 - C. Allende Prieto 2007
We report high-resolution spectroscopy of 125 field stars previously observed as part of the Sloan Digital Sky Survey and its program for Galactic studies, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These spectra are used to measure radial velocities and to derive atmospheric parameters, which we compare with those reported by the SEGUE Stellar Parameter Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS ugriz photometry and low-resolution (R = 2000) spectroscopy. For F- and G-type stars observed with high signal-to-noise ratios (S/N), we empirically determine the typical random uncertainties in the radial velocities, effective temperatures, surface gravities, and metallicities delivered by the SSPP to be 2.4 km/s, 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic uncertainties of a similar magnitude in the effective temperatures and metallicities. We estimate random errors for lower S/N spectra based on numerical simulations.
We present a method for the determination of [alpha/Fe] ratios from low-resolution (R = 2000) SDSS/SEGUE stellar spectra. By means of a star-by-star comparison with degraded spectra from the ELODIE spectral library and with a set of moderately high-resolution (R = 15,000) and medium-resolution (R = 6000) spectra of SDSS/SEGUE stars, we demonstrate that we are able to measure [alpha/Fe] from SDSS/SEGUE spectra (with S/N > 20/1) to a precision of better than 0.1 dex, for stars with atmospheric parameters in the range Teff = [4500, 7000] K, log g = [1.5, 5.0], and [Fe/H] = [-1.4, +0.3], over the range [alpha/Fe] = [-0.1, +0.6]. For stars with [Fe/H] < -1.4, our method requires spectra with slightly higher signal-to-noise to achieve this precision (S/N > 25/1). Over the full temperature range considered, the lowest metallicity star for which a confident estimate of [alpha/Fe] can be obtained from our approach is [Fe/H] ~ -2.5; preliminary tests indicate that a metallicity limit as low as [Fe/H] ~ -3.0 may apply to cooler stars. As a further validation of this approach, weighted averages of [alpha/Fe] obtained for SEGUE spectra of likely member stars of Galactic globular clusters (M15, M13, and M71) and open clusters (NGC 2420, M67, and NGC 6791) exhibit good agreement with the values of [alpha/Fe] from previous studies. The results of the comparison with NGC 6791 imply that the metallicity range for the method may extend to ~ +0.5.
181 - J.T. Pijloo 2015
We have coupled a fast, parametrized star cluster evolution code to a Markov Chain Monte Carlo code to determine the distribution of probable initial conditions of observed star clusters, which may serve as a starting point for future $N$-body calculations. In this paper we validate our method by applying it to a set of star clusters which have been studied in detail numerically with $N$-body simulations and Monte Carlo methods: the Galactic globular clusters M4, 47 Tucanae, NGC 6397, M22, $omega$ Centauri, Palomar 14 and Palomar 4, the Galactic open cluster M67, and the M31 globular cluster G1. For each cluster we derive a distribution of initial conditions that, after evolution up to the clusters current age, evolves to the currently observed conditions. We find that there is a connection between the morphology of the distribution of initial conditions and the dynamical age of a cluster and that a degeneracy in the initial half-mass radius towards small radii is present for clusters which have undergone a core collapse during their evolution. We find that the results of our method are in agreement with $N$-body and Monte Carlo studies for the majority of clusters. We conclude that our method is able to find reliable posteriors for the determined initial mass and half-mass radius for observed star clusters, and thus forms an suitable starting point for modeling an observed clusterrq{}s evolution.
157 - Maosheng Xiang 2014
We introduce the LAMOST Stellar Parameter Pipeline at Peking University --- LSP3, developed and implemented for the determinations of radial velocity $V_{rm r}$ and stellar atmospheric parameters (effective temperature $T_{rm eff}$, surface gravity log,$g$, metallicity [Fe/H]) for the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC). We describe the algorithms of LSP3 and examine the accuracy of parameters yielded by it. The precision and accuracy of parameters yielded are investigated by comparing results of multi-epoch observations and of candidate members of open and globular clusters, with photometric calibration, as well as with independent determinations available from a number of external databases, including the PASTEL archive, the APOGEE, SDSS and RAVE surveys, as well as those released in the LAMOST DR1. The uncertainties of LSP3 parameters are characterized and quantified as a function of the spectral signal-to-noise ratio (SNR) and stellar atmospheric parameters. We conclude that the current implementation of LSP3 has achieved an accuracy of 5.0,km,s$^{-1}$, 150,K, 0.25,dex, 0.15,dex for the radial velocity, effective temperature, surface gravity and metallicity, respectively, for LSS-GAC spectra of FGK stars of SNRs per pixel higher than 10. The LSP3 has been applied to over a million LSS-GAC spectra collected hitherto. Stellar parameters yielded by the LSP3 will be released to the general public following the data policy of LAMOST, together with estimates of the interstellar extinction $E(B-V)$ and stellar distances, deduced by combining spectroscopic and multi-band photometric measurements using a variety of techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا