Do you want to publish a course? Click here

The LAMOST Stellar Parameter Pipeline at Peking University --- LSP3

158   0   0.0 ( 0 )
 Added by Maosheng Xiang
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce the LAMOST Stellar Parameter Pipeline at Peking University --- LSP3, developed and implemented for the determinations of radial velocity $V_{rm r}$ and stellar atmospheric parameters (effective temperature $T_{rm eff}$, surface gravity log,$g$, metallicity [Fe/H]) for the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC). We describe the algorithms of LSP3 and examine the accuracy of parameters yielded by it. The precision and accuracy of parameters yielded are investigated by comparing results of multi-epoch observations and of candidate members of open and globular clusters, with photometric calibration, as well as with independent determinations available from a number of external databases, including the PASTEL archive, the APOGEE, SDSS and RAVE surveys, as well as those released in the LAMOST DR1. The uncertainties of LSP3 parameters are characterized and quantified as a function of the spectral signal-to-noise ratio (SNR) and stellar atmospheric parameters. We conclude that the current implementation of LSP3 has achieved an accuracy of 5.0,km,s$^{-1}$, 150,K, 0.25,dex, 0.15,dex for the radial velocity, effective temperature, surface gravity and metallicity, respectively, for LSS-GAC spectra of FGK stars of SNRs per pixel higher than 10. The LSP3 has been applied to over a million LSS-GAC spectra collected hitherto. Stellar parameters yielded by the LSP3 will be released to the general public following the data policy of LAMOST, together with estimates of the interstellar extinction $E(B-V)$ and stellar distances, deduced by combining spectroscopic and multi-band photometric measurements using a variety of techniques.



rate research

Read More

The GALANTE optical photometric survey is observing the northern Galactic plane and some adjacent regions using seven narrow- and intermediate-filters, covering a total of 1618 square degrees. The survey has been designed with multiple exposure times and at least two different air masses per field to maximize its photometric dynamic range, comparable to that of Gaia, and ensure the accuracy of its photometric calibration. The goal is to reach at least 1% accuracy and precision in the seven bands for all stars brighter than AB magnitude 17 while detecting fainter stars with lower values of the signal-to-noise ratio.The main purposes of GALANTE are the identification and study of extinguished O+B+WR stars, the derivation of their extinction characteristics, and the cataloguing of F and G stars in the solar neighbourhood. Its data will be also used for a variety of other stellar studies and to generate a high-resolution continuum-free map of the H{alpha} emission in the Galactic plane. We describe the techniques and the pipeline that are being used to process the data, including the basis of an innovative calibration system based on Gaia DR2 and 2MASS photometry.
Photoinjectors are widely used for linear accelerators as electron sources to generate high-brightness electron beam. Drive laser, which determines the timing structure and quality of the electron beam, is a crucial device of photoinjector. A new drive laser system has been designed and constructed for the upgraded 3.5-cell DC-SRF photoinjector at Peking University. The drive laser system consists of a 1064 nm laser oscillator, a four- stage amplifier, the second and fourth harmonic generators, the optical system to transfer the UV pulses to the photocathode, and the synchronization system. The drive laser system has been successfully applied in the stable operation of DC-SRF photoinjector and its performance meets the requirements. 266 nm laser with an average power close to 1W can be delivered to illuminate the Cs2Te photocathode and the instability is less than 5% for long time operation. The design consideration for improving the UV laser quality, a detailed description of laser system, and its performance are presented in this paper.
The velocity anisotropy parameter, beta, is a measure of the kinematic state of orbits in the stellar halo which holds promise for constraining the merger history of the Milky Way (MW). We determine global trends for beta as a function of radius from three suites of simulations, including accretion only and cosmological hydrodynamic simulations. We find that both types of simulations are consistent and predict strong radial anisotropy (<beta>~0.7) for Galactocentric radii greater than 10 kpc. Previous observations of beta for the MWs stellar halo claim a detection of an isotropic or tangential dip at r~20 kpc. Using the N-body+SPH simulations, we investigate the temporal persistence, population origin, and severity of dips in beta. We find dips in the in situ stellar halo are long-lived, while dips in the accreted stellar halo are short-lived and tied to the recent accretion of satellite material. We also find that a major merger as early as z~1 can result in a present day low (isotropic to tangential) value of beta over a wide range of radii and angular expanse. While all of these mechanisms are plausible drivers for the beta dip observed in the MW, in the simulations, each mechanism has a unique metallicity signature associated with it, implying that future spectroscopic surveys could distinguish between them. Since an accurate knowledge of beta(r) is required for measuring the mass of the MW halo, we note significant transient dips in beta could cause an overestimate of the halos mass when using spherical Jeans equation modeling.
198 - L. Greggio , R. Falomo , S. Zaggia 2012
The expected imaging capabilities of future Extremely Large Telescopes (ELTs) will offer the unique possibility to investigate the stellar population of distant galaxies from the photometry of the stars in very crowded fields. Using simulated images and photometric analysis we explore here two representative science cases aimed at recovering the characteristics of the stellar populations in the inner regions of distant galaxies. Specifically: case A) at the center of the disk of a giant spiral in the Centaurus Group, (mu B~21, distance of 4.6 Mpc); and, case B) at half of the effective radius of a giant elliptical in the Virgo Cluster (mu~19.5, distance of 18 Mpc). We generate synthetic frames by distributing model stellar populations and adopting a representative instrumental set up, i.e. a 42 m Telescope operating close to the diffraction limit. The effect of crowding is discussed in detail showing how stars are measured preferentially brighter than they are as the confusion limit is approached. We find that (i) accurate photometry (sigma~0.1, completeness >90%) can be obtained for case B) down to I~28.5, J~27.5 allowing us to recover the stellar metallicity distribution in the inner regions of ellipticals in Virgo to within ~0.1 dex; (ii) the same photometric accuracy holds for the science case A) down to J~28.0, K~27.0, enabling to reconstruct of the star formation history up to the Hubble time via simple star counts in diagnostic boxes. For this latter case we discuss the possibility of deriving more detailed information on the star formation history from the analysis of their Horizontal Branch stars. We show that the combined features of high sensitivity and angular resolution of ELTs may open a new era for our knowledge of the stellar content of galaxies of different morphological type up to the distance of the Virgo cluster.
We provide a comprehensive multi-aspect study on the performance of a pipeline used by the LIGO-Virgo Collaboration for estimating parameters of gravitational-wave bursts. We add simulated signals with four different morphologies (sine-Gaussians, Gaussians, white-noise bursts, and binary black hole signals) to simulated noise samples representing noise of the two Advanced LIGO detectors during their first observing run. We recover them with the BayesWave (BW) pipeline to study its accuracy in sky localization, waveform reconstruction, and estimation of model-independent waveform parameters. BW localizes sources with a level of accuracy comparable for all four morphologies, with the median separation of actual and estimated sky locations ranging from 25.1$^{circ}$ to 30.3$^{circ}$. This is a reasonable accuracy in the two-detector case, and is comparable to accuracies of other localization methods studied previously. As BW reconstructs generic transient signals with sine-Gaussian wavelets, it is unsurprising that BW performs the best in reconstructing sine-Gaussian and Gaussian waveforms. BWs accuracy in waveform reconstruction increases steeply with network signal-to-noise ratio (SNR$_{rm net}$), reaching a $85%$ and $95%$ match between the reconstructed and actual waveform below SNR$_{rm net} approx 20$ and SNR$_{rm net} approx 50$, respectively, for all morphologies. BWs accuracy in estimating central moments of waveforms is only limited by statistical errors in the frequency domain, and is affected by systematic errors too in the time domain as BW cannot reconstruct low-amplitude parts of signals overwhelmed by noise. The figures of merit we introduce can be used in future characterizations of parameter estimation pipelines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا