Do you want to publish a course? Click here

Electronic structure and magnetic properties of pyroxenes (Li,Na)TM(Si,Ge)2O6: novel low-dimensional magnets with 90 bonds

86   0   0.0 ( 0 )
 Added by Sergey Streltsov V
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The results of the LSDA+U calculations for pyroxenes with diverse magnetic properties (Li,Na)TM(Si,Ge)$_2$O$_6$, where TM is the transition metal ion (Ti,V,Cr,Mn,Fe), are presented. We show that the anisotropic orbital ordering results in the spin-gap formation in NaTiSi$_2$O$_6$. The detailed analysis of different contributions to the intrachain exchange interactions for pyroxenes is performed both analytically using perturbation theory and basing on the results of the band structure calculations. The antiferromagnetic $t_{2g}-t_{2g}$ exchange is found to decrease gradually in going from Ti to Fe. It turns out to be nearly compensated by ferromagnetic interaction between half-filled $t_{2g}$ and empty $e_g$ orbitals in Cr-based pyroxenes. The fine-tuning of the interaction parameters by the crystal structure results in the ferromagnetism for NaCrGe$_2$O$_6$. Further increase of the total number of electrons and occupation of $e_g$ sub-shell makes the $t_{2g}-e_g$ contribution and total exchange interaction antiferromagnetic for Mn- and Fe-based pyroxenes. Strong oxygen polarization was found in Fe-based pyroxenes. It is shown that this effect leads to a considerable reduction of antiferromagnetic intrachain exchange. The obtained results may serve as a basis for the analysis of diverse magnetic properties of pyroxenes, including those with recently discovered multiferroic behavior.



rate research

Read More

133 - Chao Cao , Jian-Xin Zhu 2020
Using the state-of-art dynamical mean-field theory combined with density functional theory method, we have performed systematic study on the temperature and pressure dependent electronic structure of ferromagnetic quantum critical material candidate CeRh$_6$Ge$_4$. At -3.9 GPa and -8.3 GPa, the Ce-4$f$ occupation variation, the local magnetic susceptibility, and the low-frequency electronic self-energy behaviors suggest the Ce-4$f$ electrons are in the localized state; whereas at 6.5 GPa and 13.1 GPa, these quantities indicate the Ce-4$f$ electrons are in the itinerant state. The characteristic temperatures associated with the coherent Kondo screening is gradually suppressed to 0 around 0.8 GPa upon releasing external pressure, indicative of a local quantum critical point. Interestingly, the momentum-resolved spectrum function shows that even at the localized state side, highly anisotropic $mathbf{k}$-dependent hybridization between Ce-4$f$ and conduction electrons is still present along $Gamma$-A, causing hybridization gap in between. The calculations predict 8 Fermi surface sheets at the local-moment side and 6 sheets at the Kondo coherent state. Finally, the self-energy at 0.8 GPa can be well fitted by marginal Fermi-liquid form, giving rise to a linearly temperature dependent resistivity.
We report the results of low-temperature measurements of the specific heat Cp(T), ac susceptibility chi(T) and 23Na nuclear magnetic resonance NMR of Na2V3O7. At liquid He temperatures Cp(T)/T exhibits broad field-dependent maxima, which shift to higher temperatures upon increasing the applied magnetic field H. Below 1.5 K the ac magnetic susceptibility chi(T) follows a Curie-Weiss law and exhibits a cusp at 0.086 mK which indicates a phase transition at very low temperatures. These results support the previous conjecture that Na2V3O7 is close to a quantum critical point (QCP) at mu_{0}H = 0 T. The entire data set, including results of measurements of the NMR spin-lattice relaxation 1/T1(T), reveals a complex magnetic behavior at low temperatures. We argue that it is due to a distribution of singlet-triplet energy gaps of dimerized V moments. The dimerization process evolves over a rather broad temperature range around and below 100 K. At the lowest temperatures the magnetic properties are dominated by the response of only a minor fraction of the V moments.
186 - S. Hirai , Y. Goto , A. Wakatsuki 2014
Mn$_3$O$_4$ is a spin frustrated magnet that adopts a tetragonally distorted spinel structure at ambient conditions and a CaMn$_2$O$_4$-type postspinel structure at high pressure. We conducted both optical measurements and emph{ab} emph{initio} calculations, and systematically studied the electronic band structures of both the spinel and postspinel Mn$_3$O$_4$ phases. For both phases, theoretical electronic structures are consistent with the optical absorption spectra, and display characteristic band-splitting of the conduction band. The band gap obtained from the absorption spectra is 1.91(6) eV for the spinel phase, and 0.94(2) eV for the postspinel phase. Both phases are charge-transfer type insulators. The Mn 3emph{d} $t_2$$_g$ and O 2emph{p} form antibonding orbitals situated at the conduction band with higher energy.
266 - J. Bobroff , S. Hebert , G. Lang 2007
We present a comparative study of CoO2 layers in the Bi-misfit and NaxCoO2 cobaltates. Co NMR measures the intrinsic susceptibility of the Co layers and is not affected by spurious contributions. At low dopings where room-temperature thermopower (TEP) is large, Curie-Weiss susceptibilities are observed in both materials. But NMR and muSR experiments find neither charge nor spin order down to low temperatures in Bi-misfit, in contrast to the case of NaxCoO2. This demonstrates that metallicity, charge and magnetic orders are specific of the Na layers in NaxCoO2 whereas strong correlations are generic of the cobaltates physics and could explain the large TEP.
416 - N. Qureshi , A. Wildes , C. Ritter 2021
We report the low-temperature properties of SrNd$_2$O$_4$, a geometrically frustrated magnet. Magnetisation and heat capacity measurements performed on polycrystalline samples indicate the appearance of a magnetically ordered state at $T_{rm N}=2.28(4)$~K. Powder neutron diffraction measurements reveal that an afm state with the propagation vector QV is stabilised below this temperature. The magnetic order is incomplete, as only one of the two Nd$^{3+}$ sites carries a significant magnetic moment while the other site remains largely disordered. The presence of a disordered magnetic component below $T_{rm N}$ is confirmed with polarised neutron diffraction measurements. In an applied magnetic field, the bulk properties measurements indicate a phase transition at about 30~kOe. We construct a tentative $H$-$T$ phase diagram of sno from these measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا