Do you want to publish a course? Click here

Anisotropies in insulating La$_{2-x}$Sr$_x$CuO$_4$: angular resolved photoemission and optical absorption

147   0   0.0 ( 0 )
 Added by Oleg P. Sushkov
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Due to the orthorhombic distortion of the lattice, the electronic hopping integrals along the $a$ and $b$ diagonals, the orthorhombic directions, are slightly different. We calculate their difference in the LDA and find $t_{a}^{prime}-t_{b}^{prime}approx 8 $meV. We argue that electron correlations in the insulating phase of La$_{2-x}$Sr$_{x}$CuO$_{4}$, i. e. at doping $xleq 0.055,$ dramatically enhance the $(t_{a}^{prime}-t_{b}^{prime}) $-splitting between the $a$- and $b$-hole valleys. In particular, we predict that the intensity of both angle-resolved photoemission and of optical absorption is very different for the $a$ and $b$ nodal points.



rate research

Read More

We report detailed thermodynamic and transport measurements for non-superconducting La$_{1.7}$Sr$_{0.3}$CuO$_4$. Collectively, these data reveal that a highly-correlated Fermi-liquid ground state exists in La$_{2-x}$Sr$_x$CuO$_4$ beyond the superconducting dome, and confirm that charge transport in the cuprates is dominated at finite temperatures by intense electron-electron scattering.
90 - O. Ivashko , M. Horio , W. Wan 2018
The transition temperature $T_textrm{c}$ of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La$_{2-mathrm{x}}$Sr$_mathrm{x}$CuO$_4$ thin films, such substrates are sub-optimal and the highest $T_textrm{c}$ is instead obtained using LaSrAlO$_4$. An outstanding challenge is thus to understand the optimal conditions for superconductivity in thin films: which microscopic parameters drive the change in $T_mathrm{c}$ and how can we tune them? Here we demonstrate, by a combination of x-ray absorption and resonant inelastic x-ray scattering spectroscopy, how the Coulomb and magnetic-exchange interaction of La$_2$CuO$_4$ thin films can be enhanced by compressive strain. Our experiments and theoretical calculations establish that the substrate producing the largest $T_textrm{c}$ under doping also generates the largest nearest neighbour hopping integral, Coulomb and magnetic-exchange interaction. We hence suggest optimising the parent Mott state as a strategy for enhancing the superconducting transition temperature in cuprates.
We have performed a temperature-dependent angle-integrated photoemission study of lightly-doped to heavily-overdoped La$_{2-x}$Sr$_{x}$CuO$_4$ and oxygen-doped La$_2$CuO$_{4.10}$. We found that both the magnitude $Delta$* of the (small) pseudogap and the temperature textit{T}* at which the pseudogap is opened increases with decreasing hole concentration, consistent with previous studies. On the other hand, the superconducting gap $Delta_{sc}$ was found to remain small for decreasing hole concentration. The results can be explained if the superconducting gap opens only on the Fermi arc around the nodal (0,0)-($pi,pi$) direction while the pseudogap opens around $sim$($pi$, 0).
The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone in La2-xSrxCuO4, spanning the doping phase diagram from the anti-ferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the anti-nodal direction. This phenomenology is discussed in terms of the nature of the magnetism in the doped cuprates. Survival of the high energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low energy excitations remains ambiguous.
We report combined soft and hard x-ray scattering studies of the electronic and lattice modulations associated with stripe order in La$_{1.875}$Ba$_{0.125}$CuO$_4$ and La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$. We find that the amplitude of both the electronic modulation of the hole density and the strain modulation of the lattice is significantly larger in La$_{1.875}$Ba$_{0.125}$CuO$_4$ than in La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ and is also better correlated. The in-plane correlation lengths are isotropic in each case; for La$_{1.875}$Ba$_{0.125}$CuO$_4$, $xi^{hole}=255pm 5$ AA whereas for La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$F, $xi^{hole}=111pm 7$ AA. We find that the modulations are temperature independent in La$_{1.875}$Ba$_{0.125}$CuO$_4$ in the low temperature tetragonal phase. In contrast, in La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$, the amplitude grows smoothly from zero, beginning 13 K below the LTT phase transition. We speculate that the reduced average tilt angle in La$_{1.875}$Ba$_{0.125}$CuO$_4$ results in reduced charge localization and incoherent pinning, leading to the longer correlation length and enhanced periodic modulation amplitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا