Do you want to publish a course? Click here

Impacts of preference and geography on epidemic spreading

158   0   0.0 ( 0 )
 Added by Xin-Jian Xu
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the standard susceptible-infected-susceptible model on a random network to study the effects of preference and geography on diseases spreading. The network grows by introducing one random node with $m$ links on a Euclidean space at unit time. The probability of a new node $i$ linking to a node $j$ with degree $k_j$ at distance $d_{ij}$ from node $i$ is proportional to $k_{j}^{A}/d_{ij}^{B}$, where $A$ and $B$ are positive constants governing preferential attachment and the cost of the node-node distance. In the case of A=0, we recover the usual epidemic behavior with a critical threshold below which diseases eventually die out. Whereas for B=0, the critical behavior is absent only in the condition A=1. While both ingredients are proposed simultaneously, the network becomes robust to infection for larger $A$ and smaller $B$.



rate research

Read More

Social interactions are stratified in multiple contexts and are subject to complex temporal dynamics. The systematic study of these two features of social systems has started only very recently mainly thanks to the development of multiplex and time-varying networks. However, these two advancements have progressed almost in parallel with very little overlap. Thus, the interplay between multiplexity and the temporal nature of connectivity patterns is poorly understood. Here, we aim to tackle this limitation by introducing a time-varying model of multiplex networks. We are interested in characterizing how these two properties affect contagion processes. To this end, we study SIS epidemic models unfolding at comparable time-scale respect to the evolution of the multiplex network. We study both analytically and numerically the epidemic threshold as a function of the overlap between, and the features of, each layer. We found that, the overlap between layers significantly reduces the epidemic threshold especially when the temporal activation patterns of overlapping nodes are positively correlated. Furthermore, when the average connectivity across layers is very different, the contagion dynamics are driven by the features of the more densely connected layer. Here, the epidemic threshold is equivalent to that of a single layered graph and the impact of the disease, in the layer driving the contagion, is independent of the overlap. However, this is not the case in the other layers where the spreading dynamics are sharply influenced by it. The results presented provide another step towards the characterization of the properties of real networks and their effects on contagion phenomena
We study SIS epidemic spreading processes unfolding on a recent generalisation of the activity-driven modelling framework. In this model of time-varying networks each node is described by two variables: activity and attractiveness. The first, describes the propensity to form connections. The second, defines the propensity to attract them. We derive analytically the epidemic threshold considering the timescale driving the evolution of contacts and the contagion as comparable. The solutions are general and hold for any joint distribution of activity and attractiveness. The theoretical picture is confirmed via large-scale numerical simulations performed considering heterogeneous distributions and different correlations between the two variables. We find that heterogeneous distributions of attractiveness alter the contagion process. In particular, in case of uncorrelated and positive correlations between the two variables, heterogeneous attractiveness facilitates the spreading. On the contrary, negative correlations between activity and attractiveness hamper the spreading. The results presented contribute to the understanding of the dynamical properties of time-varying networks and their effects on contagion phenomena unfolding on their fabric.
A model for epidemic spreading on rewiring networks is introduced and analyzed for the case of scale free steady state networks. It is found that contrary to what one would have naively expected, the rewiring process typically tends to suppress epidemic spreading. In particular it is found that as in static networks, rewiring networks with degree distribution exponent $gamma >3$ exhibit a threshold in the infection rate below which epidemics die out in the steady state. However the threshold is higher in the rewiring case. For $2<gamma leq 3$ no such threshold exists, but for small infection rate the steady state density of infected nodes (prevalence) is smaller for rewiring networks.
85 - Saptarshi Sinha , Deep Nath , 2020
The detection and management of diseases become quite complicated when pathogens contain asymptomatic phenotypes amongst their ranks, as evident during the recent COVID-19 pandemic. Spreading of diseases has been studied extensively under the paradigm of Susceptible - Infected - Recovered - Deceased (SIRD) dynamics. Various game-theoretic approaches have also addressed disease spread, many of which consider S, I, R, and D as strategies rather than as states. Remarkably, most studies from the above approaches do not account for the distinction between the symptomatic or asymptomatic aspect of the disease. It is well-known that precautionary measures like washing hands, wearing masks and social distancing significantly mitigate the spread of many contagious diseases. Herein, we consider the adoption of such precautions as strategies and treat S, I, R, and D as states. We also attempt to capture the differences in epidemic spreading arising from symptomatic and asymptomatic diseases on various network topologies. Through extensive computer simulations, we examine that the cost of maintaining precautionary measures as well as the extent of mass testing in a population affects the final fraction of socially responsible individuals. We observe that the lack of mass testing could potentially lead to a pandemic in case of asymptomatic diseases. Network topology also seems to play an important role. We further observe that the final fraction of proactive individuals depends on the initial fraction of both infected as well as proactive individuals. Additionally, edge density can significantly influence the overall outcome. Our findings are in broad agreement with the lessons learnt from the ongoing COVID-19 pandemic.
Models of epidemic spreading on complex networks have attracted great attention among researchers in physics, mathematics, and epidemiology due to their success in predicting and controlling scenarios of epidemic spreading in real-world scenarios. To understand the interplay between epidemic spreading and the topology of a contact network, several outstanding theoretical approaches have been developed. An accurate theoretical approach describing the spreading dynamics must take both the network topology and dynamical correlations into consideration at the expense of increasing the complexity of the equations. In this short survey we unify the most widely used theoretical approaches for epidemic spreading on complex networks in terms of increasing complexity, including the mean-field, the heterogeneous mean-field, the quench mean-field, dynamical message-passing, link percolation, and pairwise approximation. We build connections among these approaches to provide new insights into developing an accurate theoretical approach to spreading dynamics on complex networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا