Do you want to publish a course? Click here

Some forgotten features of the Bose Einstein Correlations

127   0   0.0 ( 0 )
 Added by Grzegorz Wilk
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

Notwithstanding the visible maturity of the subject of Bose-Einstein Correlations (BEC), as witnessed nowadays, we would like to bring to ones attention two points, which apparently did not received attention they deserve: the problem of the choice of the form of $C_2(Q)$ correlation function when effects of partial coherence of the hadronizing source are to be included and the feasibility to model effects of Bose-Einstein statistics, in particular the BEC, by direct numerical simulations.



rate research

Read More

68 - O.V.Utyuz , G.Wilk , Z.Wlodarczyk 2005
We describe an attempt to numerically model Bose-Einstein correlations (BEC) from within, i.e., by using them as the most fundamental ingredient of a Monte Carlo event generator (MC) rather than considering them as a kind of (more or less important, depending on the actual situation) afterburner, which inevitably changes the original physical content of the MC code used to model multiparticle production process.
184 - W. J. Metzger 2015
Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays and in 7 TeV pp minimum bias interactions are investigated within the framework of the tau-model.
We are presenting here the new formulae for Bose-Einstein correlations (BEC) which contain effects of final state interactions (FSI) of both strong (in $s$-wave) and electromagnetic origin. We demonstrate the importance of FSI in BEC by analysing data for $e^+e^-$ annihilation and for heavy collisions. The inclusion of FSI results in the practical elimination (at least in $e^+e^-$ data) of the so called degree of coherence parameter $lambda$ (which becomes equal unity) and the long range parameter $gamma$ (which is now equal zero).
We report on the measurement of the one-dimensional charged kaon correlation functions using 600~GeV/{it c} $Sigma^-$, $pi^-$ and 540~GeV/{it c} $p$ beams from the SELEX~(E781) experiment at the Fermilab Tevatron. $K^{pm}K^{pm}$ correlation functions are studied for three transverse pair momentum, $k_T$, ranges and parameterized by a Gaussian form. The emission source radii, $R$, and the correlation strength, $lambda$, are extracted. The analysis shows a decrease of the source radii with increasing kaon transverse pair momentum for all beam types.
98 - T.Osada , S.Sano , 1996
We present an analytical formula for the Bose-Einstein correlations (BEC) which includes effects of both Coulomb and strong final stateinteractions (FSI). It was obtained by using Coulomb wave function together with the scattering partial wave amplitude of the strong interactions describing data on the $s$-wave phase shift. We have proved numerically that this method is equivalent to solving Schr{o}dinger equation with Coulomb and the $s$-wave strong interaction potentials. As an application we have analysed, using our formula which includes the degree of coherence and the long range correlation, the data for $e^+e^-$ annihilations. We have found that the degree of coherence present in our formula approaches approximately unity whereas the long range correlation parameter becomes approximately zero. These results suggest that the physical meanings of the fractional degree of coherence and the long range correlation observed in various other analyses can most probably be attributed to FSI.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا