Do you want to publish a course? Click here

Magnetic fields and the dynamics of spiral galaxies

404   0   0.0 ( 0 )
 Added by Clare Dobbs
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the dynamics of magnetic fields in spiral galaxies by performing 3D MHD simulations of galactic discs subject to a spiral potential. Recent hydrodynamic simulations have demonstrated the formation of inter-arm spurs as well as spiral arm molecular clouds provided the ISM model includes a cold HI phase. We find that the main effect of adding a magnetic field to these calculations is to inhibit the formation of structure in the disc. However, provided a cold phase is included, spurs and spiral arm clumps are still present if $beta gtrsim 0.1$ in the cold gas. A caveat to two phase calculations though is that by assuming a uniform initial distribution, $beta gtrsim 10$ in the warm gas, emphasizing that models with more consistent initial conditions and thermodynamics are required. Our simulations with only warm gas do not show such structure, irrespective of the magnetic field strength. Furthermore, we find that the introduction of a cold HI phase naturally produces the observed degree of disorder in the magnetic field, which is again absent from simulations using only warm gas. Whilst the global magnetic field follows the large scale gas flow, the magnetic field also contains a substantial random component that is produced by the velocity dispersion induced in the cold gas during the passage through a spiral shock. Without any cold gas, the magnetic field in the warm phase remains relatively well ordered apart from becoming compressed in the spiral shocks. Our results provide a natural explanation for the observed high proportions of disordered magnetic field in spiral galaxies and we thus predict that the relative strengths of the random and ordered components of the magnetic field observed in spiral galaxies will depend on the dynamics of spiral shocks.



rate research

Read More

62 - Rainer Beck 2015
Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 mu G) and in central starburst regions (50-100 mu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. -- Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 mu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies, and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. -- Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. Magnetic arms between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. -- The origin and evolution of cosmic magnetic fields will be studied with forthcoming radio telescopes like the Square Kilometre Array.
233 - Marita Krause 2009
The main observational results from radio continuum and polarization observations about the magnetic field strength and large-scale pattern for face-on and edge-on spiral galaxies are summarized and compared within our sample of galaxies of different morphological types, inclinations, and star formation rates (SFR). We found that galaxies with low SFR have higher thermal fractions/smaller synchrotron fractions than those with normal or high SFR. Adopting an equipartition model, we conclude that the nonthermal radio emission and the emph{total magnetic field} strength grow nonlinearly with SFR, while the regular magnetic field strength does not seem to depend on SFR. We also studied the magnetic field structure and disk thicknesses in highly inclined (edge-on) galaxies. We found in four galaxies that - despite their different radio appearance - the vertical scale heights for both, the thin and thick disk/halo, are about equal (0.3/1.8 kpc at 4.75 GHz), independently of their different SFR. This implies that all these galaxies host a galactic wind, in which the bulk velocity of the cosmic rays (CR) is determined by the total field strength within the galactic disk. The galaxies in our sample also show a similar large-scale magnetic field configuration, parallel to the midplane and X-shaped further away from the disk plane, independent of Hubble type and SFR in the disk. Hence we conclude that also the large-scale magnetic field pattern does not depend on the amount of SFR.
Observations of regular magnetic fields in several nearby galaxies reveal magnetic arms situated between the material arms. The nature of these magnetic arms is a topic of active debate. Previously we found a hint that taking into account the effects of injections of small-scale magnetic fields generated, e.g., by turbulent dynamo action, into the large-scale galactic dynamo can result in magnetic arm formation. We now investigate the joint roles of an arm/interarm turbulent diffusivity contrast and injections of small-scale magnetic field on the formation of large-scale magnetic field (magnetic arms) in the interarm region. We use the relatively simple no-$z$ model for the galactic dynamo. This involves projection on to the galactic equatorial plane of the azimuthal and radial magnetic field components; the field component orthogonal to the galactic plane is estimated from the solenoidality condition. We find that addition of diffusivity gradients to the effect of magnetic field injections makes the magnetic arms much more pronounced. In particular, the regular magnetic field component becomes larger in the interarm space compared to that within the material arms.The joint action of the turbulent diffusivity contrast and small-scale magnetic field injections (with the possible participation of other effects previously suggested) appears to be a plausible explanation for the phenomenon of magnetic arms.
95 - M. Kutschera , J. Jalocha 2004
Physical mechanisms that can influence rotation curves of spiral galaxies are discussed. For dark matter studies, possible contributions due to magnetic fields and non-Newtonian gravitational accelerations should be carefully accounted for. We point out that magnetic fields are particularly important in outermost parts of the disk. In the framework of general relativity the physical reason of an enhanced gravity in spiral galaxies depends on the assumed metric. The additional gravity is provided for Schwarzschild metric by nonluminous mass, whereas for Vaidya metric [1] by emission of radiative energy. In the latter case the non-Newtonian acceleration displays 1/r behaviour. Also matter flows contribute to non-Newtonian gravity.
Context. The magnetic field in spiral galaxies is known to have a large-scale spiral structure along the galactic disk and is observed as X-shaped in the halo of some galaxies. While the disk field can be well explained by dynamo action, the 3-dimensional structure of the halo field and its physical nature is still unclear. Aims. As first steps towards understanding the halo fields, we want to clarify whether the observed X-shaped field is a wide-spread pattern in the halos of spiral galaxies and whether these halo fields are just turbulent fields ordered by compression or shear (anisotropic turbulent fields), or have a large-scale regular structure. Methods. The analysis of the Faraday rotation in the halo is the tool to discern anisotropic turbulent fields from large-scale magnetic fields. This, however, has been challenging until recently because of the faint halo emission in linear polarization. Our sensitive VLA broadband observations C-band and L-band of 35 spiral galaxies seen edge-on (called CHANG-ES) allowed us to perform RM-synthesis in their halos and to analyze the results. We further accomplished a stacking of the observed polarization maps of 28 CHANG-ES galaxies at C-band. Results. Though the stacked edge-on galaxies were of different Hubble types, star formation and interaction activities, the stacked image clearly reveals an X-shaped structure of the apparent magnetic field. We detected a large-scale (coherent) halo field in all 16 galaxies that have extended polarized intensity in their halos. We detected large-scale field reversals in all of their halos. In six galaxies they are along lines about vertical to the galactic midplane (vertical RMTL) with about 2 kpc separation. Only in NGC 3044 and possibly in NGC 3448 we observed vertical giant magnetic ropes (GMRs) similar to those detected recently in NGC 4631.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا