No Arabic abstract
Here we study the problem of generalizing one of the main tools of Groebner basis theory, namely the flat deformation to the leading term ideal, to the border basis setting. After showing that the straightforward approach based on the deformation to the degree form ideal works only under additional hypotheses, we introduce border basis schemes and universal border basis families. With their help the problem can be rephrased as the search for a certain rational curve on a border basis scheme. We construct the system of generators of the vanishing ideal of the border basis scheme in different ways and study the question of how to minimalize it. For homogeneous ideals, we also introduce a homogeneous border basis scheme and prove that it is an affine space in certain cases. In these cases it is then easy to write down the desired deformations explicitly.
The main topic of the paper is the construction of various explicit flat families of border bases. To begin with, we cover the punctual Hilbert scheme Hilb^mu(A^n) by border basis schemes and work out the base changes. This enables us to control flat families obtained by linear changes of coordinates. Next we provide an explicit construction of the principal component of the border basis scheme, and we use it to find flat families of maximal dimension at each radical point. Finally, we connect radical points to each other and to the monomial point via explicit flat families on the principal component.
Given a finite order ideal $mathcal O$ in the polynomial ring $K[x_1,dots, x_n]$ over a field $K$, let $partial mathcal O$ be the border of $mathcal O$ and $mathcal P_{mathcal O}$ the Pommaret basis of the ideal generated by the terms outside $mathcal O$. In the framework of reduction structures introduced by Ceria, Mora, Roggero in 2019, we investigate relations among $partialmathcal O$-marked sets (resp. bases) and $mathcal P_{mathcal O}$-marked sets (resp. bases). We prove that a $partialmathcal O$-marked set $B$ is a marked basis if and only if the $mathcal P_{mathcal O}$-marked set $P$ contained in $B$ is a marked basis and generates the same ideal as $B$. Using a functorial description of these marked bases, as a byproduct we obtain that the affine schemes respectively parameterizing $partialmathcal O$-marked bases and $mathcal P_{mathcal O}$-marked bases are isomorphic. We are able to describe this isomorphism as a projection that can be explicitly constructed without the use of Grobner elimination techniques. In particular, we obtain a straightforward embedding of border schemes in smaller affine spaces. Furthermore, we observe that Pommaret marked schemes give an open covering of punctual Hilbert schemes. Several examples are given along all the paper.
In modeling physical systems it is sometimes useful to construct border bases of 0-dimensional polynomial ideals which are contained in the ideal generated by a given set of polynomials. We define and construct such subideal border bases, provide some basic properties and generalize a suitable variant of the Buchberger-Moeller algorithm as well as the AVI-algorithm to the subideal setting. The subideal version of the AVI-algorithm is then applied to an actual industrial problem.
Let $X$ be a set of points whose coordinates are known with limited accuracy; our aim is to give a characterization of the vanishing ideal $I(X)$ independent of the data uncertainty. We present a method to compute a polynomial basis $B$ of $I(X)$ which exhibits structural stability, that is, if $widetilde X$ is any set of points differing only slightly from $X$, there exists a polynomial set $widetilde B$ structurally similar to $B$, which is a basis of the perturbed ideal $ I(widetilde X)$.
In this paper we consider the problem of computing all possible order ideals and also sets connected to 1, and the corresponding border bases, for the vanishing ideal of a given finite set of points. In this context two different approaches are discussed: based on the Buchberger-Moller Algorithm, we first propose a new algorithm to compute all possible order ideals and the corresponding border bases for an ideal of points. The second approach involves adapting the Farr-Gao Algorithm for finding all sets connected to 1, as well as the corresponding border bases, for an ideal of points. It should be noted that our algorithms are term ordering free. Therefore they can compute successfully all border bases for an ideal of points. Both proposed algorithms have been implemented and their efficiency is discussed via a set of benchmarks.