Do you want to publish a course? Click here

Stable Border Bases for Ideals of Points

275   0   0.0 ( 0 )
 Added by John Abbott
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

Let $X$ be a set of points whose coordinates are known with limited accuracy; our aim is to give a characterization of the vanishing ideal $I(X)$ independent of the data uncertainty. We present a method to compute a polynomial basis $B$ of $I(X)$ which exhibits structural stability, that is, if $widetilde X$ is any set of points differing only slightly from $X$, there exists a polynomial set $widetilde B$ structurally similar to $B$, which is a basis of the perturbed ideal $ I(widetilde X)$.



rate research

Read More

In this paper we consider the problem of computing all possible order ideals and also sets connected to 1, and the corresponding border bases, for the vanishing ideal of a given finite set of points. In this context two different approaches are discussed: based on the Buchberger-Moller Algorithm, we first propose a new algorithm to compute all possible order ideals and the corresponding border bases for an ideal of points. The second approach involves adapting the Farr-Gao Algorithm for finding all sets connected to 1, as well as the corresponding border bases, for an ideal of points. It should be noted that our algorithms are term ordering free. Therefore they can compute successfully all border bases for an ideal of points. Both proposed algorithms have been implemented and their efficiency is discussed via a set of benchmarks.
We present an algorithm for computing Groebner bases of vanishing ideals of points that is optimized for the case when the number of points in the associated variety is less than the number of indeterminates. The algorithm first identifies a set of essential variables, which reduces the time complexity with respect to the number of indeterminates, and then uses PLU decompositions to reduce the time complexity with respect to the number of points. This gives a theoretical upper bound for its time complexity that is an order of magnitude lower than the known one for the standard Buchberger-Moeller algorithm if the number of indeterminates is much larger than the number of points. Comparison of implementations of our algorithm and the standard Buchberger-Moeller algorithm in Macaulay 2 confirm the theoretically predicted speedup. This work is motivated by recent applications of Groebner bases to the problem of network reconstruction in molecular biology.
In modeling physical systems it is sometimes useful to construct border bases of 0-dimensional polynomial ideals which are contained in the ideal generated by a given set of polynomials. We define and construct such subideal border bases, provide some basic properties and generalize a suitable variant of the Buchberger-Moeller algorithm as well as the AVI-algorithm to the subideal setting. The subideal version of the AVI-algorithm is then applied to an actual industrial problem.
Here we study the problem of generalizing one of the main tools of Groebner basis theory, namely the flat deformation to the leading term ideal, to the border basis setting. After showing that the straightforward approach based on the deformation to the degree form ideal works only under additional hypotheses, we introduce border basis schemes and universal border basis families. With their help the problem can be rephrased as the search for a certain rational curve on a border basis scheme. We construct the system of generators of the vanishing ideal of the border basis scheme in different ways and study the question of how to minimalize it. For homogeneous ideals, we also introduce a homogeneous border basis scheme and prove that it is an affine space in certain cases. In these cases it is then easy to write down the desired deformations explicitly.
The main topic of the paper is the construction of various explicit flat families of border bases. To begin with, we cover the punctual Hilbert scheme Hilb^mu(A^n) by border basis schemes and work out the base changes. This enables us to control flat families obtained by linear changes of coordinates. Next we provide an explicit construction of the principal component of the border basis scheme, and we use it to find flat families of maximal dimension at each radical point. Finally, we connect radical points to each other and to the monomial point via explicit flat families on the principal component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا