Do you want to publish a course? Click here

Transmission resonances for a Dirac particle in a one-dimensional Hulthen potential

161   0   0.0 ( 0 )
 Added by Guo Jianyou
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have solved exactly the two-component Dirac equation in the presence of a spatially one-dimensional Hulthen potential, and presented the Dirac spinors of scattering states in terms of hypergeometric functions. We have calculated the reflection and transmission coefficients by the matching conditions on the wavefunctions, and investigated the condition for the existence of transmission resonances. Furthermore, we have demonstrated how the transmission-resonance condition depends on the shape of the potential.



rate research

Read More

We study the spectrum and dynamics of a one-dimensional discrete Dirac operator in a random potential obtained by damping an i.i.d. environment with an envelope of type $n^{-alpha}$ for $alpha>0$. We recover all the spectral regimes previously obtained for the analogue Anderson model in a random decaying potential, namely: absolutely continuous spectrum in the super-critical region $alpha>frac12$; a transition from pure point to singular continuous spectrum in the critical region $alpha=frac12$; and pure point spectrum in the sub-critical region $alpha<frac12$. From the dynamical point of view, delocalization in the super-critical region follows from the RAGE theorem. In the critical region, we exhibit a simple argument based on lower bounds on eigenfunctions showing that no dynamical localization can occur even in the presence of point spectrum. Finally, we show dynamical localization in the sub-critical region by means of the fractional moments method and provide control on the eigenfunctions.
We consider a one-dimensional continuum Anderson model where the potential decays in average like $|x|^{-alpha}$, $alpha>0$. We show dynamical localization for $0<alpha<frac12$ and provide control on the decay of the eigenfunctions.
We consider the system of particles with equal charges and nearest neighbour Coulomb interaction on the interval. We study local properties of this system, in particular the distribution of distances between neighbouring charges. For zero temperature case there is sufficiently complete picture and we give a short review. For Gibbs distribution the situation is more difficult and we present two related results.
We calculate the tunneling process of a Dirac particle across two square barriers separated a distance $d$, as well as the scattering by a double cusp barrier where the centers of the cusps are separated a distance larger than their screening lengths. Using the scattering matrix formalism, we obtain the transmission and reflection amplitudes for the scattering processes of both configurations. We show that, the presence of transmission resonances modifies the Lorentizian shape of the energy resonances and induces the appearance of additional maxima in the transmission coefficient in the range of energies where transmission resonances occur. We calculate the Wigner time-delay and show how their maxima depend on the position of the transmission resonance.
We consider a one-dimensional Anderson model where the potential decays in average like $n^{-alpha}$, $alpha>0$. This simple model is known to display a rich phase diagram with different kinds of spectrum arising as the decay rate $alpha$ varies. We review an article of Kiselev, Last and Simon where the authors show a.c. spectrum in the super-critical case $alpha>frac12$, a transition from singular continuous to pure point spectrum in the critical case $alpha=frac12$, and dense pure point spectrum in the sub-critical case $alpha<frac12$. We present complete proofs of the cases $alphagefrac12$ and simplify some arguments along the way. We complement the above result by discussing the dynamical aspects of the model. We give a simple argument showing that, despite of the spectral transition, transport occurs for all energies for $alpha=frac12$. Finally, we discuss a theorem of Simon on dynamical localization in the sub-critical region $alpha<frac12$. This implies, in particular, that the spectrum is pure point in this regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا