No Arabic abstract
We present a comprehensive analysis of structure in the young, embedded cluster, NGC 1333 using members identified with Spitzer and 2MASS photometry based on their IR-excess emission. In total, 137 members are identified in this way, composed of 39 protostars and 98 more evolved pre-main sequence stars with disks. Of the latter class, four are transition/debris disk candidates. The fraction of exposed pre-main sequence stars with disks is 83% +/- 11%, showing that there is a measurable diskless pre-main sequence population. The sources in each of the Class I and Class II evolutionary states are shown to have very different spatial distributions relative to the distribution of the dense gas in their natal cloud. However, the distribution of nearest neighbor spacings among these two groups of sources are found to be quite similar, with a strong peak at spacings of 0.045 pc. Radial and azimuthal density profiles and surface density maps computed from the identified YSOs show that NGC 1333 is elongated and not strongly centrally concentrated, confirming previous claims in the literature. We interpret these new results as signs of a low velocity dispersion, extremely young cluster that is not in virial equilibrium.
We present mid-infrared spectral maps of the NGC 1333 star forming region, obtained with the the Infrared Spectrometer on board the Spitzer Space Telescope. Eight pure H2 rotational lines, from S (0) to S (7), are detected and mapped. The H2 emission appears to be associated with the warm gas shocked by the multiple outflows present in the region. A comparison between the observed intensities and the predictions of detailed shock models indicates that the emission arises in both slow (12 - 24 km/s) and fast (36 - 53 km/s) C-type shocks with an initial ortho-to-para ratio of ~ 1. The present H2 ortho-to-para ratio exhibits a large degree of spatial variations. In the post-shocked gas, it is usually about 2, i.e. close to the equilibrium value (~ 3). However, around at least two outflows, we observe a region with a much lower (~ 0.5) ortho-to-para ratio. This region probably corresponds to gas which has been heated-up recently by the passage of a shock front, but whose ortho-to-para has not reached equilibrium yet. This, together with the low initial ortho-to-para ratio needed to reproduce the observed emission, provide strong evidence that H2 is mostly in para form in cold molecular clouds. The H2 lines are found to contribute to 25 - 50% of the total outflow luminosity, and thus can be used to ascertain the importance of star formation feedback on the natal cloud. From these lines, we determine the outflow mass loss rate and, indirectly, the stellar infall rate, the outflow momentum and the kinetic energy injected into the cloud over the embedded phase. The latter is found to exceed the binding energy of individual cores, suggesting that outflows could be the main mechanism for core disruption.
Star-formation feedback onto the parent cloud is conventionally examined through the study of molecular outflows. Little is however known on the effect that atomic ejecta, tracing fast shocks, can have on the global cloud properties. In this study we employ Herschel/PACS [OI] and [CII] spectral line maps of the NGC 1333 star-forming region to assess the relative influence of atomic jets onto the star-formation process. Atomic line maps are compared against molecular outflow tracers and atomic ejecta are associated to individual driving sources. We study the detailed morphology and velocity distribution of [OI] line using channel and line-centroid maps and derive the momentum, energy, and mass flux for all the bipolar jets traced by [OI] line emission. We find that the line-centroid maps can trace velocity structures down to 5 km s$^{-1}$ which is a factor of $sim$20 beyond the nominal velocity resolution reached by Herschel/PACS. These maps reveal an unprecedented degree of details that assist significantly in the association and characterization of jets and outflows. Comparisons of the dynamical and kinematical properties shows that [OI] momentum accounts for only $sim$1% of the momentum carried by the large scale CO outflows but the energy released through the jets corresponds to 50 - 100% of the energy released in outflows. The estimated ratios of the jet to the outflow momenta and energies are consistent with the results of two-component, nested jet/outflow simulations, where jets are associated to episodic accretion events. Under this scenario, the energy from atomic jets to the cloud is as important as the energy output from outflows in maintaining turbulence and dissipating the cloud gas.
Large scale spectral maps of star forming regions enable the comparative study of the gas excitation around an ensemble of sources at a common frame of reference, providing direct insights in the multitude of processes involved. In this paper we employ spectral-line maps to decipher the excitation, the kinematical and dynamical processes in NGC 1333 as revealed by a number of different emission lines, aiming to set a reference for the applicability of tracers in constraining diverse physical processes. We reconstruct line maps for H$_2$ , CO, H$_2$O and C$^+$ using data obtained with the Spitzer-IRS and Herschel HIFI-SPIRE. We compare the morphological features of the maps and derive the gas excitation for regions of interest employing LTE and non-LTE methods. We also calculate the kinematical and dynamical properties for each outflow tracer consistently for all outflows in NGC 1333. We finally measure the water abundance in outflows with respect to carbon monoxide and molecular hydrogen. CO and H$_2$ are highly excited around B-stars and at lower levels trace protostellar outflows. H$_2$O emission is dominated by a moderately fast component associated with outflows. Intermediate J CO lines appear brightest at the locations traced by a narrow H$_2$O component, indicating that beyond the dominating collisional processes, a secondary, radiative excitation component can also be active. The morphology, kinematics, excitation and abundance variations of water are consistent with its excitation and partial dissociation in shocks. Water abundance ranges between 5 x 10$^{-7}$ and 10$^{-5}$, with the lower values being more representative. Water is brightest and most abundant around IRAS 4A which is consistent with the latter hosting a hot corino source. Finally, the outflow mass flux is found highest for CO and decreases by one and two orders of magnitude for H$_2$ and H$_2$O, respectively.
We present spectral observations of 130 young stellar objects (YSOs) in the Serpens Cloud Core and NGC 1333 embedded clusters. The observations consist of near-IR spectra in the H and K-bands, from SpeX on the IRTF and far-red spectra (6000 - 9000 A) from Hectospec on the MMT. These YSOs were identified in previous Spitzer and Chandra observations, and the evolutionary classes of the YSOs were determined from the Spitzer mid-IR photometry. With these spectra, we search for corroborating evidence for the pre-main sequence nature of the objects, study the properties of the detected emission lines as a function of evolutionary class, and obtain spectral types for the observed YSOs. By comparing the positions of the YSOs in the HR diagrams with the pre-main sequence tracks of Baraffe (1998), we determine ages of the embedded sources and study the relative ages of the YSOs with and without optically thick circumstellar disks. The apparent isochronal ages of the YSOs in both clusters range from less than 1 Myr to 10 Myr, with most objects below 3 Myr. The observed distribution of ages for the Class II and Class III objects are statistically indistinguishable. We examine the spatial distribution and extinction of the YSOs as a function of their isochronal ages. We find the sources < 3 Myr to be concentrated in the molecular cloud gas while the older sources are spatially dispersed and are not deeply embedded. Nonetheless, the sources with isochronal ages > 3 Myr show all the characteristics of young stellar objects in their spectra, their IR spectral energy distributions, and their X-ray emission.
Infrared images of the dark cloud core B59 were obtained with the Spitzer Space Telescope as part of the Cores to Disks Legacy Science project. Photometry from 3.6-70 microns indicates at least 20 candidate low-mass young stars near the core, more than doubling the previously known population. Out of this group, 13 are located within about 0.1 pc in projection of the molecular gas peak, where a new embedded source is detected. Spectral energy distributions span the range from small excesses above photospheric levels to rising in the mid-infrared. One other embedded object, probably associated with the millimeter source B59-MMS1, with a bolometric luminosity L(bol) roughly 2 L(sun), has extended structure at 3.6 and 4.5 microns, possibly tracing the edges of an outflow cavity. The measured extinction through the central part of the core is A(V) greater than of order 45 mag. The B59 core is producing young stars with a high efficiency.