Do you want to publish a course? Click here

Comparing Infrared Dirac-Born-Infeld Brane Inflation to Observations

341   0   0.0 ( 0 )
 Added by Hiranya V. Peiris
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compare the Infrared Dirac-Born-Infeld (IR DBI) brane inflation model to observations using a Bayesian analysis. The current data cannot distinguish it from the LambdaCDM model, but is able to give interesting constraints on various microscopic parameters including the mass of the brane moduli potential, the fundamental string scale, the charge or warp factor of throats, and the number of the mobile branes. We quantify some distinctive testable predictions with stringy signatures, such as the large non-Gaussianity, and the large, but regional, running of the spectral index. These results illustrate how we may be able to probe aspects of string theory using cosmological observations.



rate research

Read More

In this paper, we study a non-canonical extension of a supergravity-motivated model acting as a vivid counterexample to the cosmic no-hair conjecture due to its unusual coupling between scalar and electromagnetic fields. In particular, a canonical scalar field is replaced by the string-inspired Dirac-Born-Infeld one in this extension. As a result, exact anisotropic inflationary solutions for this Dirac-Born-Infeld model are figured out under a constant-roll condition. Furthermore, numerical calculations are performed to verify that these anisotropic constant-roll solutions are indeed attractive during their inflationary phase.
264 - Daniel Wohns 2008
The Hawking-Moss tunneling rate for a field described by the Dirac-Born-Infeld action is calculated using a stochastic approach. We find that the effect of the non-trivial kinetic term is to enhance the tunneling rate, which can be exponentially significant. This result should be compared to the DBI enhancement found in the Coleman-de Luccia case.
210 - Inyong Cho , Jinn-Ouk Gong 2015
We investigate the scalar and tensor spectral indices of the quadratic inflation model in Eddington-inspired Born-Infeld (EiBI) gravity. We find that the EiBI corrections to the spectral indices are of second and first order in the slow-roll approximation for the scalar and tensor perturbations respectively. This is very promising since the quadratic inflation model in general relativity provides a very nice fit for the spectral indices. Together with the suppression of the tensor-to-scalar ratio EiBI inflation agrees well with the observational data.
We derive new types of $U(1)^n$ Born-Infeld actions based on N=2 special geometry in four dimensions. As in the single vector multiplet (n=1) case, the non--linear actions originate, in a particular limit, from quadratic expressions in the Maxwell fields. The dynamics is encoded in a set of coefficients $d_{ABC}$ related to the third derivative of the holomorphic prepotential and in an SU(2) triplet of N=2 Fayet-Iliopoulos charges, which must be suitably chosen to preserve a residual N=1 supersymmetry.
We investigate the formation of caustics in Dirac-Born-Infeld type scalar field systems for generic classes of potentials, viz., massive rolling scalar with potential, $V(phi)=V_0e^{pm frac{1}{2} M^2 phi^2}$ and inverse power-law potentials with $V(phi)=V_0/phi^n,~0<n<2$. We find that in the case oftexttt{} exponentially decreasing rolling massive scalar field potential, there are multi-valued regions and regions of likely to be caustics in the field configuration. However there are no caustics in the case of exponentially increasing potential. We show that the formation of caustics is inevitable for the inverse power-law potentials under consideration in Minkowski space time whereas caustics do not form in this case in the FRW universe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا