Do you want to publish a course? Click here

Optical pumping via incoherent Raman transitions

161   0   0.0 ( 0 )
 Added by Andreea Boca
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

A new optical pumping scheme is presented that uses incoherent Raman transitions to prepare a trapped Cesium atom in a specific Zeeman state within the 6S_{1/2}, F=3 hyperfine manifold. An important advantage of this scheme over existing optical pumping schemes is that the atom can be prepared in any of the F=3 Zeeman states. We demonstrate the scheme in the context of cavity quantum electrodynamics, but the technique is equally applicable to a wide variety of atomic systems with hyperfine ground-state structure.

rate research

Read More

The Dicke model is of fundamental importance in quantum mechanics for understanding the collective behaviour of atoms coupled to a single electromagnetic mode. In this paper, we demonstrate a Dicke-model simulation using cavity-assisted Raman transitions in a configuration using counter-propagating laser beams. The observations indicate that motional effects should be included to fully account for the results and these results are contrasted with the experiments using single-beam and co-propagating configurations. A theoretical description is given that accounts for the beam geometries used in the experiments and indicates the potential role of motional effects. In particular a model is given that highlights the influence of Doppler broadening on the observed thresholds.
A scheme for fine tuning of quantum operations to improve their performance is proposed. A quantum system in $Lambda$ configuration with two-photon Raman transitions is considered without adiabatic elimination of the excited (intermediate) state. Conditional dynamics of the system is studied with focus on improving fidelity of quantum operations. In particular, the $pi$ pulse and $pi/2$ pulse quantum operations are considered. The dressed states for the atom-field system, with an atom driven on one transition by a classical field and on the other by a quantum cavity field, are found. A discrete set of detunings is given for which high fidelity of desired states is achieved. Analytical solutions for the quantum state amplitudes are found in the first order perturbation theory with respect to the cavity damping rate $kappa$ and the spontaneous emission rate $gamma$. Numerical solutions for higher values of $kappa$ and $gamma$ indicate a stabilizing role of spontaneous emission in the $pi$ and $pi/2$ pulse quantum operations. The idea can also be applied for excitation pulses of different shapes.
We propose a method for increasing the Raman scattering from an ensemble of molecules by up to four orders of magnitude. Our method requires an additional coherent source of IR radiation with the half-frequency of the Stokes shift. This radiation excites the molecule electronic subsystem that in turn, via Frohlich coupling, parametrically excites nuclear oscillations at a resonant frequency. This motion is coherent and leads to a boost of the Raman signal in comparison to the spontaneous signal because its intensity is proportional to the squared number of molecules in the illuminated volume.
134 - Keyu Xia 2016
Squeezing ensemble of spins provides a way to surpass the standard quantum limit (SQL) in quantum metrology and test the fundamental physics as well, and therefore attracts broad interest. Here we propose an experimentally accessible protocol to squeeze a giant ensemble of spins via the geometric phase control. Using the cavity-assisted Raman transitions in a double $Lambda$-type system, we realize an effective Dicke model. Under the condition of vanishing effective spin transition frequency, we find a particular evolution time where the cavity decouples from the spins and the spin ensemble is squeezed considerably. Our scheme has the potential to improve the sensitivity in quantum metrology with spins by about two orders.
86 - A. D. Boozer 2008
We present two schemes for driving Raman transitions between the ground state hyperfine manifolds of a single atom trapped within a high-finesse optical cavity. In both schemes, the Raman coupling is generated by standing-wave fields inside the cavity, thus circumventing the optical access limitations that free-space Raman schemes must face in a cavity system. These cavity-based Raman schemes can be used to coherently manipulate both the internal and the motional degrees of freedom of the atom, and thus provide powerful tools for studying cavity quantum electrodynamics. We give a detailed theoretical analysis of each scheme, both for a three-level atom and for a multi-level cesium atom. In addition, we show how these Raman schemes can be used to cool the axial motion of the atom to the quantum ground state, and we perform computer simulations of the cooling process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا