Do you want to publish a course? Click here

Squeezing giant spin states via geometric phase control in cavity-assisted Raman transitions

135   0   0.0 ( 0 )
 Added by Keyu Xia
 Publication date 2016
  fields Physics
and research's language is English
 Authors Keyu Xia




Ask ChatGPT about the research

Squeezing ensemble of spins provides a way to surpass the standard quantum limit (SQL) in quantum metrology and test the fundamental physics as well, and therefore attracts broad interest. Here we propose an experimentally accessible protocol to squeeze a giant ensemble of spins via the geometric phase control. Using the cavity-assisted Raman transitions in a double $Lambda$-type system, we realize an effective Dicke model. Under the condition of vanishing effective spin transition frequency, we find a particular evolution time where the cavity decouples from the spins and the spin ensemble is squeezed considerably. Our scheme has the potential to improve the sensitivity in quantum metrology with spins by about two orders.



rate research

Read More

The Dicke model is of fundamental importance in quantum mechanics for understanding the collective behaviour of atoms coupled to a single electromagnetic mode. In this paper, we demonstrate a Dicke-model simulation using cavity-assisted Raman transitions in a configuration using counter-propagating laser beams. The observations indicate that motional effects should be included to fully account for the results and these results are contrasted with the experiments using single-beam and co-propagating configurations. A theoretical description is given that accounts for the beam geometries used in the experiments and indicates the potential role of motional effects. In particular a model is given that highlights the influence of Doppler broadening on the observed thresholds.
The generation and storage of spin squeezing is an attracting topic in quantum metrology and the foundations of quantum mechanics. The major models to realize the spin squeezing are the one- and two-axis twisting models. Here, we consider a collective spin system coupled to a bosonic field, and show that proper constant-value controls in this model can simulate the dynamical behaviors of these two models. More interestingly, a better performance of squeezing can be obtained when the control is time-varying, which is generated via a reinforcement learning algorithm. However, this advantage becomes limited if the collective noise is involved. To deal with it, we propose a four-step strategy for the construction of a new type of combined controls, which include both constant-value and time-varying controls, but performed at different time intervals. Compared to the full time-varying controls, the combined controls not only give a comparable minimum value of the squeezing parameter over time, but also provides a better lifetime and larger full amount of squeezing. Moreover, the amplitude form of a combined control is simpler and more stable than the full time-varying control. Therefore, our scheme is very promising to be applied in practice to improve the generation and storage performance of squeezing.
A scheme to achieve spin squeezing using a geometric phase induced by a single mechanical mode is proposed. The analytical and numerical results show that the ultimate degree of spin squeezing depends on the parameter $frac{n_{th}+1/2}{Qsqrt{N}}$, which is the ratio between the thermal excitation, the quality factor and square root of ensemble size. The undesired coupling between the spin ensemble and the bath can be efficiently suppressed by Bang-Bang control pulses. With high quality factor, the ultimate limit of the ideal one-axis twisting spin squeezing can be obtained for an NV ensemble in diamond.
Entangled atomic states, such as spin squeezed states, represent a promising resource for a new generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques can be used to substantially enhance the degree of spin squeezing in strongly interacting many-body systems, even in the presence of noise and imperfections. Specifically, we present a protocol that is robust to noise which outperforms conventional methods. Potential experimental implementations are discussed.
114 - A. D. Boozer 2008
We present two schemes for driving Raman transitions between the ground state hyperfine manifolds of a single atom trapped within a high-finesse optical cavity. In both schemes, the Raman coupling is generated by standing-wave fields inside the cavity, thus circumventing the optical access limitations that free-space Raman schemes must face in a cavity system. These cavity-based Raman schemes can be used to coherently manipulate both the internal and the motional degrees of freedom of the atom, and thus provide powerful tools for studying cavity quantum electrodynamics. We give a detailed theoretical analysis of each scheme, both for a three-level atom and for a multi-level cesium atom. In addition, we show how these Raman schemes can be used to cool the axial motion of the atom to the quantum ground state, and we perform computer simulations of the cooling process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا