Do you want to publish a course? Click here

The z=0.8 precursors of todays bulges

106   0   0.0 ( 0 )
 Added by Marc Balcells
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the color structure of disk galaxies in the Groth strip at redshifts 0.1<z<1.2. Our aim is to test formation models in which bulges form before/after the disk. We find smooth color distributions with gentle outward blueing across the galaxy image: bulges are not distinctly redder than their disks; and bulge colors strongly correlate with global colors. The results suggest a roughly coeval evolution of bulges and disks. About 50% of the nuclei of galaxies with central light excesses above the outer exponential profile hold passively evolving red populations. The remainder 50% are galaxies with central blue colors similar to their disks. They may be bulges in formation, or the central parts of disks with non-exponential surface brightness profiles.



rate research

Read More

We studied the chronology of galactic bulge and disc formation by analysing the relative contributions of these components to the B-band rest-frame luminosity density at different epochs. We present the first estimate of the evolution of the fraction of rest-frame B-band light in galactic bulges and discs since redshift z~0.8. We performed a bulge-to-disc decomposition of HST/ACS images of 3266 galaxies in the zCOSMOS-bright survey with spectroscopic redshifts in the range 0.7 < z < 0.9. We find that the fraction of B-band light in bulges and discs is $(26 pm 4)%$ and $(74 pm 4)%$, respectively. When compared with rest-frame B-band measurements of galaxies in the local Universe in the same mass range ($10^{9} M_{odot}lessapprox M lessapprox 10^{11.5} M_{odot}$), we find that the B-band light in discs decreases by ~30% from z~0.7-0.9 to z~0, while the light from the bulge increases by ~30% over the same period of time. We interpret this evolution as the consequence of star formation and mass assembly processes, as well as morphological transformation, which gradually shift stars formed at half the age of the Universe from star-forming late-type/irregular galaxies toearlier types and ultimately into spheroids.
In this paper, we use stacking analysis to trace the mass-growth, colour evolution, and structural evolution of present-day massive galaxies ($log(M_{*}/M_{odot})=11.5$) out to $z=5$. We utilize the exceptional depth and area of the latest UltraVISTA data release, combined with the depth and unparalleled seeing of CANDELS to gather a large, mass-selected sample of galaxies in the NIR (rest-frame optical to UV). Progenitors of present-day massive galaxies are identified via an evolving cumulative number density selection, which accounts for the effects of merging to correct for the systematic biases introduced using a fixed cumulative number density selection, and find progenitors grow in stellar mass by $approx1.5~mathrm{dex}$ since $z=5$. Using stacking, we analyze the structural parameters of the progenitors and find that most of the stellar mass content in the central regions was in place by $zsim2$, and while galaxies continue to assemble mass at all radii, the outskirts experience the largest fractional increase in stellar mass. However, we find evidence of significant stellar mass build up at $r<3~mathrm{kpc}$ beyond $z>4$ probing an era of significant mass assembly in the interiors of present day massive galaxies. We also compare mass assembly from progenitors in this study to the EAGLE simulation and find qualitatively similar assembly with $z$ at $r<3~mathrm{kpc}$. We identify $zsim1.5$ as a distinct epoch in the evolution of massive galaxies where progenitors transitioned from growing in mass and size primarily through in-situ star formation in disks to a period of efficient growth in $r_{e}$ consistent with the minor merger scenario.
We examine the distribution of stellar masses of galaxies in MS 1054-03 and RX J0152.7-1357, two X-ray selected clusters of galaxies at z=0.83. Our stellar mass estimates, from spectral energy distribution fitting, reproduce the dynamical masses as measured from velocity dispersions and half-light radii with a scatter of 0.2 dex in the mass for early-type galaxies. When we restrict our sample of members to high stellar masses, > 1e11.1 Msun (M* in the Schechter mass function for cluster galaxies), we find that the fraction of early-type galaxies is 79 +/- 6% at z=0.83 and 87 +/- 6% at z=0.023 for the Coma cluster, consistent with no evolution. Previous work with luminosity-selected samples finds that the early-type fraction in rich clusters declines from =~80% at z=0 to =~60% at z=0.8. The observed evolution in the early-type fraction from luminosity-selected samples must predominately occur among sub-M* galaxies. As M* for field and group galaxies, especially late-types, is below M* for clusters galaxies, infall could explain most of the recent early-type fraction growth. Future surveys could determine the morphological distributions of lower mass systems which will confirm or refute this explanation.
78 - E. A. Cooke 2019
We analyse 850um continuum observations of eight massive X-ray detected galaxy clusters at z~0.8-1.6 taken with SCUBA-2 on the James Clerk Maxwell Telescope. We find an average overdensity of 850um-selected sources of a factor of 4+/-2 per cluster within the central 1Mpc compared to the field. We investigate the multiwavelength properties of these sources and identify 34 infrared counterparts to 26 SCUBA-2 sources. Their colours suggest that the majority of these counterparts are probable cluster members. We use the multi-wavelength far-infrared photometry to measure the total luminosities and total cluster star-formation rates demonstrating that they are roughly three orders of magnitude higher than local clusters. We predict the H-band luminosities of the descendants of our cluster submillimetre galaxies and find that their stellar luminosity distribution is consistent with that of passive elliptical galaxies in z~0 clusters. Together, the faded descendants of the passive cluster population already in place at z~1 and the cluster submillimetre galaxies are able to account for the total luminosity function of early-type cluster galaxies at z~0. This suggests that the majority of the luminous passive population in z~0 clusters are likely to have formed at z>>1 through an extreme, dust-obscured starburst event.
We present the Fundamental Plane (FP) for 38 early-type galaxies in the two rich galaxy clusters RXJ0152.7-1357 (z=0.83) and RXJ1226.9+3332 (z=0.89), reaching a limiting magnitude of M_B =-19.8 mag in the rest frame of the clusters. While the zero point offset of the FP for these high redshift clusters relative to our low redshift sample is consistent with passive evolution with a formation redshift of z_form ~ 3.2, the FP for the high redshift clusters is not only shifted as expected for a mass-independent z_form, but rotated relative to the low redshift sample. Expressed as a relation between the galaxy masses and the mass-to-light ratios the FP is significantly steeper for the high redshift clusters than found at low redshift. We interpret this as a mass dependency of the star formation history, as has been suggested by other recent studies. The low mass galaxies (10^10.3 M_sun) have experienced star formation as recently as z ~ 1.35 (1.5 Gyr prior to their look back time), while galaxies with masses larger than 10^11.3 M_sun had their last major star formation episode at z > 4.5.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا