Do you want to publish a course? Click here

Confinement Induced Polarization effects in Valence and Inner-shell Spectra of Atactic Polystyrene

119   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Vacuum ultraviolet (VUV) transmission spectra show a clear polarization effect in pi electronic transition in spin coated atactic polystyrene (aPS) films of thickness below 4Rg, where Rg (~20.4nm) is the radius of gyration of the polymer. This transition associated with pendant benzene rings in polystyrene. The polarization effect clearly indicates pendant benzene ring alignment on a macroscopic scale. Study of core electron (1s) transition through near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the ordering and shows that the rings are oriented towards out-of-plane direction with a tilt angle ~63 degree with the sample plane, which is consistent with the observed in-plane (sample surface) VUV polarization. These results indicate the transition of a common polymer, like polystyrene, inherently disordered in the bulk, to an orientationally ordered phase under a certain degree of confinement.



rate research

Read More

We simulate a strongly size-disperse hard-sphere fluid confined between two parallel, hard walls. We find that confinement induces crystallization into n-layered hexagonal lattices and a novel honeycomb-shaped structure, facilitated by fractionation. The onset of freezing prevents the formation of a stable glass phase and occurs at much smaller packing fraction than in bulk. Varying the wall separation triggers solid-to-solid transitions and a systematic change of the size-distribution of crystalline particles, which we rationalize using a semi-quantitative theory. We show that the crystallization can be exploited in a wedge geometry to demix particles of different sizes.
When systems that can undergo phase separation between two coexisting phases in the bulk are confined in thin film geometry between parallel walls, the phase behavior can be profoundly modified. These phenomena shall be described and exemplified by computer simulations of the Asakura-Oosawa model for colloid-polymer mixtures, but applications to other soft matter systems (e.g. confined polymer blends) will also be mentioned. Typically a wall will prefer one of the phases, and hence the composition of the system in the direction perpendicular to the walls will not be homogeneous. If both walls are of the same kind, this effect leads to a distortion of the phase diagram of the system in thin film geometry, in comparison with the bulk, analogous to the phenomenon of capillary condensation of simple fluids in thin capillaries. In the case of competing walls, where both walls prefer different phases of the two phases coexisting in the bulk, a state with an interface parallel to the walls gets stabilized. The transition from the disordered phase to this soft mode phase is rounded by the finite thickness of the film and not a sharp phase transition. However, a sharp transition can occur where this interface gets localized at (one of) the walls. The relation of this interface localization transition to wetting phenomena is discussed. Finally, an outlook to related phenomena is given, such as the effects of confinement in cylindrical pores on the phase behavior, and more complicated ordering phenomena (lamellar mesophases of block copolymers or nematic phases of liquid crystals under confinement).
The rheological properties of highly concentrated suspensions of hard-sphere particles are studied with particular reference to the rheological response of shear induced crystals. Using practically monodisperse hard spheres, we prepare shear induced crystals under oscillatory shear and examine their linear and non-linear mechanical response in comparison with their glassy counterparts at the same volume fraction. It is evident, that shear-induced crystallization causes a significant drop in the elastic and viscous moduli due to structural rearrangements that ease flow. For the same reason the critical (peak of G) and crossover (overlap of G and G) strain are smaller in the crystal compared to the glass at the same volume fraction. When, however the distance from the maximum packing in each state is taken into account the elastic modulus of the crystal is found to be larger than the glass at the same free volume suggesting a strengthened material due to long range order. Finally, shear induced crystals counter-intuitively exhibit similar rheological ageing to the glass (with a logarithmic increase of G), indicating that the shear induced structure is not at thermodynamic equilibrium.
Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces - tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for inter-surface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces - namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics - facilitates this non-classical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie-Wenzel transitions on superhydrophobic surfaces, to hydrophobically-driven biomolecular folding and assembly.
We study equilibrium shapes and shape transformations of a confined semiflexible chain inside a soft lipid tubule using simulations and continuum theories. The deformed tubular shapes and chain conformations depend on the relative magnitude of their bending moduli. We characterise the collapsed macromolecular shapes by computing statistical quantities that probe the polymer properties at small length scales and report a prolate to toroidal coil transition for stiff chains. Deformed tubular shapes, calculated using elastic theories, agree with simulations. In conjunction with scattering studies, our work may provide a mechanistic understanding of gene encapsulation in soft structures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا