We present an approach using quantum walks (QWs) to redistribute ultracold atoms in an optical lattice. Different density profiles of atoms can be obtained by exploiting the controllable properties of QWs, such as the variance and the probability distribution in position space using quantum coin parameters and engineered noise. The QW evolves the density profile of atoms in a superposition of position space resulting in a quadratic speedup of the process of quantum phase transition. We also discuss implementation in presently available setups of ultracold atoms in optical lattices.
The features of superfluid-Mott insulator phase transition in the array of dissipative nonlinear cavities are analyzed. We show analytically that the coupling to the bath can be reduced to renormalizing the eigenmodes of atom-cavity system. This gives rise to a localizing effect and drives the system into mixed states. For the superfluid state, a dynamical instability will lead to a sweeping to a localized state of photons. For the Mott state, a dissipation-induced fluctuation will suppress the restoring of long-range phase coherence driven by interaction.
Describing a particle in an external electromagnetic field is a basic task of quantum mechanics. The standard scheme for this is known as minimal coupling, and consists of replacing the momentum operators in the Hamiltonian by modified ones with an added vector potential. In lattice systems it is not so clear how to do this, because there is no continuous translation symmetry, and hence there are no momenta. Moreover, when time is also discrete, as in quantum walk systems, there is no Hamiltonian, only a unitary step operator. We present a unified framework of gauge theory for such discrete systems, keeping a close analogy to the continuum case. In particular, we show how to implement minimal coupling in a way that automatically guarantees unitary dynamics. The scheme works in any lattice dimension, for any number of internal degree of freedom, for walks that allow jumps to a finite neighborhood rather than to nearest neighbours, is naturally gauge invariant, and prepares possible extensions to non-abelian gauge groups.
I show how to perform a Loschmidt echo (time reversal) in the Bose-Hubbard model implemented with cold bosonic atoms in an optical lattice. The echo is obtained by applying a linear phase imprint on the lattice and a change in magnetic field to tune the boson-boson scattering length through a Feshbach resonance. I discuss how the echo can measure the fidelity of the quantum simulation, the intensity of an external potential (e.g. gravity), or the critical point of the superfluid-insulator quantum phase transition.
We observe the quantum coherent dynamics of atomic spinor wavepackets in the double well potentials of a far-off-resonance optical lattice. With appropriate initial conditions the system Rabi oscillates between the left and right localized states of the ground doublet, and at certain times the wavepacket corresponds to a coherent superposition of these mesoscopically distinguishable quantum states. The atom/optical double well potential is a flexible and powerful system for further study of mesoscopic quantum coherence, quantum control and the quantum/classical transition.
We provide an explanation of recent experimental results of Xue et al., where full revivals in a time-dependent quantum walk model with a periodically changing coin are found. Using methods originally developed for electric walks with a space-dependent, rather than a time-dependent coin, we provide a full explanation of the observations of Xue et al. We extend the analysis from periodic time-dependence to quasi-periodic behaviour with periods incommensurate to the step size. Spectral analysis, one of the principal tools for the study of electric walks, fails for time-dependent systems, but we find qualitative propagation behaviour of the time-dependent system in close analogy to the electric case.