Do you want to publish a course? Click here

Mesoscopic quantum coherence in an optical lattice

221   0   0.0 ( 0 )
 Added by Poul S. Jessen
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observe the quantum coherent dynamics of atomic spinor wavepackets in the double well potentials of a far-off-resonance optical lattice. With appropriate initial conditions the system Rabi oscillates between the left and right localized states of the ground doublet, and at certain times the wavepacket corresponds to a coherent superposition of these mesoscopically distinguishable quantum states. The atom/optical double well potential is a flexible and powerful system for further study of mesoscopic quantum coherence, quantum control and the quantum/classical transition.



rate research

Read More

Ultracold atoms in optical lattices are an important platform for quantum information science, lending itself naturally to quantum simulation of many-body physics and providing a possible path towards a scalable quantum computer. To realize its full potential, atoms at individual lattice sites must be accessible to quantum control and measurement. This challenge has so far been met with a combination of high-resolution microscopes and resonance addressing that have enabled both site-resolved imaging and spin-flips. Here we show that methods borrowed from the field of inhomogeneous control can greatly increase the performance of resonance addressing in optical lattices, allowing us to target arbitrary single-qubit gates on desired sites, with minimal crosstalk to neighboring sites and greatly improved robustness against uncertainty in the lattice position. We further demonstrate the simultaneous implementation of different gates at adjacent sites with a single global control waveform. Coherence is verified through two-pulse Ramsey interrogation, and randomized benchmarking is used to measure an average gate fidelity of ~95%. Our control-based approach to reduce crosstalk and increase robustness is broadly applicable in optical lattices irrespective of geometry, and may be useful also on other platforms for quantum information processing, such as ion traps and nitrogen-vacancy centers in diamond.
111 - V. S. Malinovsky , K. R. Moore , 2019
We develop and study quantum and semi-classical models of Rydberg-atom spectroscopy in amplitude-modulated optical lattices. Both initial- and target-state Rydberg atoms are trapped in the lattice. Unlike in any other spectroscopic scheme, the modulation-induced ponderomotive coupling between the Rydberg states is spatially periodic and perfectly phase-locked to the lattice trapping potentials. This leads to a novel type of sub-Doppler mechanism, which we explain in detail. In our exact quantum model, we solve the time-dependent Schrodinger equation in the product space of center-of-mass (COM) momentum states and the internal-state space. We also develop a perturbative model based on the band structure in the lattice and Fermis golden rule, as well as a semi-classical trajectory model in which the COM is treated classically and the internal-state dynamics quantum-mechanically. In all models we obtain the spectrum of the target Rydberg-state population versus the lattice modulation frequency, averaged over the initial thermal COM momentum distribution of the atoms. We investigate the quantum-classical correspondence of the problem in several parameter regimes and exhibit spectral features that arise from vibrational COM coherences and rotary-echo effects. Applications in Rydberg-atom spectroscopy are discussed.
The linear Faraday effect is used to implement a continuous measurement of the spin of a sample of laser cooled atoms trapped in an optical lattice. One of the optical lattice beams serves also as a probe beam, thereby allowing one to monitor the atomic dynamics in real time and with minimal perturbation. A simple theory is developed to predict the measurement sensitivity and associated cost in terms of decoherence caused by the scattering of probe photons. Calculated signal-to-noise ratios in measurements of Larmor precession are found to agree with experimental data for a wide range of lattice intensity and detuning. Finally, quantum backaction is estimated by comparing the measurement sensitivity to spin projection noise, and shown to be insignificant in the current experiment. A continuous quantum measurement based on Faraday spectroscopy in optical lattices may open up new possibilities for the study of quantum feedback and classically chaotic quantum systems.
We introduce and theoretically demonstrate a quantum metamaterial made of dense ultracold neutral atoms loaded into an inherently defect-free artificial crystal of light, immune to well-known critical chal- lenges inevitable in conventional solid-state platforms. We demonstrate an all-optical control on ultrafast time scales over the photonic topological transition of the isofrequency contour from an open to close topology at the same frequency. This atomic lattice quantum metamaterial enables a dynamic manipula- tion of the decay rate of a probe quantum emitter by more than an order of magnitude. This proposal may lead to practically lossless, tunable and topologically-reconfigurable quantum metamaterials, for single- or few-photon-level applications as varied as quantum sensing, quantum information processing, and quantum simulations using metamaterials.
We propose a novel platform for the investigation of quantum wave packet dynamics, offering a complementary approach to existing theoretical models and experimental systems. It relies on laser-cooled neutral atoms which orbit around an optical nanofiber in an optical potential produced by a red-detuned guided light field. We show that the atomic center-of-mass motion exhibits genuine quantum effects like collapse and revival of the atomic wave packet. As distinctive advantages, our approach features a tunable dispersion relation as well as straightforward readout for the wave packet dynamics and can be implemented using existing quantum optics techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا