No Arabic abstract
We investigate physical properties that can be used to distinguish the valley degree of freedom in systems where inversion symmetry is broken, using graphene systems as examples. We show that the pseudospin associated with the valley index of carriers has an intrinsic magnetic moment, in close analogy with the Bohr magneton for the electron spin. There is also a valley dependent Berry phase effect that can result in a valley contrasting Hall transport, with carriers in different valleys turning into opposite directions transverse to an in-plane electric field. These effects can be used to generate and detect valley polarization by magnetic and electric means, forming the basis for the so-called valley-tronics applications.
Bloch states of electrons in honeycomb two-dimensional crystals with multi-valley band structure and broken inversion symmetry have orbital magnetic moments of a topological nature. In crystals with two degenerate valleys, a perpendicular magnetic field lifts the valley degeneracy via a Zeeman effect due to these magnetic moments, leading to magnetoelectric effects which can be leveraged for creating valleytronic devices. In this work, we demonstrate that trilayer graphene with Bernal stacking, (ABA TLG) hosts topological magnetic moments with a large and widely tunable valley g-factor, reaching a value 500 at the extreme of the studied parametric range. The reported experiment consists in sublattice-resolved scanning tunneling spectroscopy under perpendicular electric and magnetic fields that control the TLG bands. The tunneling spectra agree very well with the results of theoretical modelling that includes the full details of the TLG tight-binding model and accounts for a quantum-dot-like potential profile formed electrostatically under the scanning tunneling microscope tip. Our results show that ABA TLG is a compelling quantum material platform.
In this work, high field carrier transport in two dimensional (2D) graphene is investigated. Analytical models are applied to estimate the saturation currents in graphene, based on the high scattering rate of optical phonon emission. Non-equilibrium (hot) phonon effect was studied by Monte Carlo (MC) simulations. MC simulation confirms that hot phonon effects play a dominant role in current saturation in graphene. Current degradation due to elastic scattering events is much smaller compared to the hot phonon effect. Transient phenomenon as such as velocity overshoot was also studied using MC simulation. The simulation results shows promising potential for graphene to be used in high speed electronic devices by shrinking the channel length below 100nm if electrostatic control can be exercised in the absence of a band gap.
Valley pseudospin, the quantum degree of freedom characterizing the degenerate valleys in energy bands, is a distinct feature of two-dimensional Dirac materials. Similar to spin, the valley pseudospin is spanned by a time reversal pair of states, though the two valley pseudospin states transform to each other under spatial inversion. The breaking of inversion symmetry induces various valley-contrasted physical properties; for instance, valley-dependent topological transport is of both scientific and technological interests. Bilayer graphene (BLG) is a unique system whose intrinsic inversion symmetry can be controllably broken by a perpendicular electric field, offering a rare possibility for continuously tunable valley-topological transport. Here, we used a perpendicular gate electric field to break the inversion symmetry in BLG, and a giant nonlocal response was observed as a result of the topological transport of the valley pseudospin. We further showed that the valley transport is fully tunable by external gates, and that the nonlocal signal persists up to room temperature and over long distances. These observations challenge contemporary understanding of topological transport in a gapped system, and the robust topological transport may lead to future valleytronic applications.
The phase diagram of isotropically expanded graphene cannot be correctly predicted by ignoring either electron correlations, or mobile carbons, or the effect of applied stress, as was done so far. We calculate the ground state enthalpy (not just energy) of strained graphene by an accurate off-lattice Quantum Monte Carlo (QMC) correlated ansatz of great variational flexibility. Following undistorted semimetallic graphene (SEM) at low strain, multi-determinant Heitler-London correlations stabilize between $simeq$8.5% and $simeq$15% strain an insulating Kekule-like dimerized (DIM) state. Closer to a crystallized resonating-valence bond than to a Peierls state, the DIM state prevails over the competing antiferromagnetic insulating (AFI) state favored by density-functional calculations which we conduct in parallel. The DIM stressed graphene insulator, whose gap is predicted to grow in excess of 1 eV before failure near 15% strain, is topological in nature, implying under certain conditions 1D metallic interface states lying in the bulk energy gap.
Formation, evolution, and vanishing of bubbles are common phenomena in our nature, which can be easily observed in boiling or falling waters, carbonated drinks, gas-forming electrochemical reactions, etc. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in liquid phase. Here we demonstrate, for the first time, that the nanobubbles in water encapsulated by graphene membrane can be visualized by in situ ultrahigh vacuum transmission electron microscopy (UHV-TEM), showing the critical radius of nanobubbles determining its unusual long-term stability as well as two distinct growth mechanisms of merging nanobubbles (Ostwald ripening and coalescing) depending on their relative sizes. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensation, transmission and evaporation. Our finding is expected to provide a deeper insight to understand unusual chemical, biological and environmental phenomena where nanoscale gas-state is involved.