Do you want to publish a course? Click here

Belief-Propagation for Weighted b-Matchings on Arbitrary Graphs and its Relation to Linear Programs with Integer Solutions

96   0   0.0 ( 0 )
 Added by Mohsen Bayati
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

We consider the general problem of finding the minimum weight $bm$-matching on arbitrary graphs. We prove that, whenever the linear programming (LP) relaxation of the problem has no fractional solutions, then the belief propagation (BP) algorithm converges to the correct solution. We also show that when the LP relaxation has a fractional solution then the BP algorithm can be used to solve the LP relaxation. Our proof is based on the notion of graph covers and extends the analysis of (Bayati-Shah-Sharma 2005 and Huang-Jebara 2007}. These results are notable in the following regards: (1) It is one of a very small number of proofs showing correctness of BP without any constraint on the graph structure. (2) Variants of the proof work for both synchronous and asynchronous BP; it is the first proof of convergence and correctness of an asynchronous BP algorithm for a combinatorial optimization problem.



rate research

Read More

We present a simultaneous localization and mapping (SLAM) algorithm that is based on radio signals and the association of specular multipath components (MPCs) with geometric features. Especially in indoor scenarios, robust localization from radio signals is challenging due to diffuse multipath propagation, unknown MPC-feature association, and limited visibility of features. In our approach, specular reflections at flat surfaces are described in terms of virtual anchors (VAs) that are mirror images of the physical anchors (PAs). The positions of these VAs and possibly also of the PAs are unknown. We develop a Bayesian model of the SLAM problem and represent it by a factor graph, which enables the use of belief propagation (BP) for efficient marginalization of the joint posterior distribution. The resulting BP-based SLAM algorithm detects the VAs associated with the PAs and estimates jointly the time-varying position of the mobile agent and the positions of the VAs and possibly also of the PAs, thereby leveraging the MPCs in the radio signal for improved accuracy and robustness of agent localization. The algorithm has a low computational complexity and scales well in all relevant system parameters. Experimental results using both synthetic measurements and real ultra-wideband radio signals demonstrate the excellent performance of the algorithm in challenging indoor environments.
Gaussian belief propagation (GaBP) is an iterative message-passing algorithm for inference in Gaussian graphical models. It is known that when GaBP converges it converges to the correct MAP estimate of the Gaussian random vector and simple sufficient conditions for its convergence have been established. In this paper we develop a double-loop algorithm for forcing convergence of GaBP. Our method computes the correct MAP estimate even in cases where standard GaBP would not have converged. We further extend this construction to compute least-squares solutions of over-constrained linear systems. We believe that our construction has numerous applications, since the GaBP algorithm is linked to solution of linear systems of equations, which is a fundamental problem in computer science and engineering. As a case study, we discuss the linear detection problem. We show that using our new construction, we are able to force convergence of Montanaris linear detection algorithm, in cases where it would originally fail. As a consequence, we are able to increase significantly the number of users that can transmit concurrently.
This paper proposes a belief propagation (BP)-based algorithm for sequential detection and estimation of multipath components (MPCs) parameters based on radio signals. Under dynamic channel conditions with moving transmitter and/or receiver, the number of MPCs reflected from visible geometric features, the MPC dispersion parameters (delay, angle, Doppler frequency, etc), and the number of false alarm contributions are unknown and time-varying. We develop a Bayesian model for sequential detection and estimation of MPC dispersion parameters, and represent it by a factor graph enabling the use of BP for efficient computation of the marginal posterior distributions. At each time instance, a snapshot-based channel estimator provides parameter estimates of a set of MPCs which are used as noisy measurements by the proposed BP-based algorithm. It performs joint probabilistic data association, estimation of the time-varying MPC parameters, and the mean number of false alarm measurements by means of the sum-product algorithm rules. The results using synthetic measurements show that the proposed algorithm is able to cope with a high number of false alarm measurements originating from the snapshot-based channel estimator and to sequentially detect and estimate MPCs parameters with very low signal-to-noise ratio (SNR). The performance of the proposed algorithm compares well to existing algorithms for high SNR MPCs, but significantly it outperforms them for medium or low SNR MPCs. In particular, we show that our algorithm outperforms the Kalman enhanced super resolution tracking (KEST) algorithm, a state-of-the-art sequential channel parameters estimation method. Furthermore, results with real radio measurements demonstrate the excellent performance of the algorithm in realistic and challenging scenarios.
We introduce a two-stage decimation process to improve the performance of neural belief propagation (NBP), recently introduced by Nachmani et al., for short low-density parity-check (LDPC) codes. In the first stage, we build a list by iterating between a conventional NBP decoder and guessing the least reliable bit. The second stage iterates between a conventional NBP decoder and learned decimation, where we use a neural network to decide the decimation value for each bit. For a (128,64) LDPC code, the proposed NBP with decimation outperforms NBP decoding by 0.75 dB and performs within 1 dB from maximum-likelihood decoding at a block error rate of $10^{-4}$.
This paper focuses on finite-dimensional upper and lower bounds on decodable thresholds of Zm and binary low-density parity-check (LDPC) codes, assuming belief propagation decoding on memoryless channels. A concrete framework is presented, admitting systematic searches for new bounds. Two noise measures are considered: the Bhattacharyya noise parameter and the soft bit value for a maximum a posteriori probability (MAP) decoder on the uncoded channel. For Zm LDPC codes, an iterative m-dimensional bound is derived for m-ary-input/symmetric-output channels, which gives a sufficient stability condition for Zm LDPC codes and is complemented by a matched necessary stability condition introduced herein. Applications to coded modulation and to codes with non-equiprobable distributed codewords are also discussed. For binary codes, two new lower bounds are provided for symmetric channels, including a two-dimensional iterative bound and a one-dimensional non-iterative bound, the latter of which is the best known bound that is tight for binary symmetric channels (BSCs), and is a strict improvement over the bound derived by the channel degradation argument. By adopting the reverse channel perspective, upper and lower bounds on the decodable Bhattacharyya noise parameter are derived for non-symmetric channels, which coincides with the existing bound for symmetric channels.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا