Do you want to publish a course? Click here

Finite-Dimensional Bounds on Zm and Binary LDPC Codes with Belief Propagation Decoders

165   0   0.0 ( 0 )
 Added by Chih-Chun Wang
 Publication date 2006
and research's language is English




Ask ChatGPT about the research

This paper focuses on finite-dimensional upper and lower bounds on decodable thresholds of Zm and binary low-density parity-check (LDPC) codes, assuming belief propagation decoding on memoryless channels. A concrete framework is presented, admitting systematic searches for new bounds. Two noise measures are considered: the Bhattacharyya noise parameter and the soft bit value for a maximum a posteriori probability (MAP) decoder on the uncoded channel. For Zm LDPC codes, an iterative m-dimensional bound is derived for m-ary-input/symmetric-output channels, which gives a sufficient stability condition for Zm LDPC codes and is complemented by a matched necessary stability condition introduced herein. Applications to coded modulation and to codes with non-equiprobable distributed codewords are also discussed. For binary codes, two new lower bounds are provided for symmetric channels, including a two-dimensional iterative bound and a one-dimensional non-iterative bound, the latter of which is the best known bound that is tight for binary symmetric channels (BSCs), and is a strict improvement over the bound derived by the channel degradation argument. By adopting the reverse channel perspective, upper and lower bounds on the decodable Bhattacharyya noise parameter are derived for non-symmetric channels, which coincides with the existing bound for symmetric channels.



rate research

Read More

We consider the effect of LLR saturation on belief propagation decoding of low-density parity-check codes. Saturation occurs universally in practice and is known to have a significant effect on error floor performance. Our focus is on threshold analysis and stability of density evolution. We analyze the decoder for certain low-density parity-check code ensembles and show that belief propagation decoding generally degrades gracefully with saturation. Stability of density evolution is, on the other hand, rather strongly affected by saturation and the asymptotic qualitative effect of saturation is similar to reduction of variable node degree by one.
We consider near maximum-likelihood (ML) decoding of short linear block codes. In particular, we propose a novel decoding approach based on neural belief propagation (NBP) decoding recently introduced by Nachmani et al. in which we allow a different parity-check matrix in each iteration of the algorithm. The key idea is to consider NBP decoding over an overcomplete parity-check matrix and use the weights of NBP as a measure of the importance of the check nodes (CNs) to decoding. The unimportant CNs are then pruned. In contrast to NBP, which performs decoding on a given fixed parity-check matrix, the proposed pruning-based neural belief propagation (PB-NBP) typically results in a different parity-check matrix in each iteration. For a given complexity in terms of CN evaluations, we show that PB-NBP yields significant performance improvements with respect to NBP. We apply the proposed decoder to the decoding of a Reed-Muller code, a short low-density parity-check (LDPC) code, and a polar code. PB-NBP outperforms NBP decoding over an overcomplete parity-check matrix by 0.27-0.31 dB while reducing the number of required CN evaluations by up to 97%. For the LDPC code, PB-NBP outperforms conventional belief propagation with the same number of CN evaluations by 0.52 dB. We further extend the pruning concept to offset min-sum decoding and introduce a pruning-based neural offset min-sum (PB-NOMS) decoder, for which we jointly optimize the offsets and the quantization of the messages and offsets. We demonstrate performance 0.5 dB from ML decoding with 5-bit quantization for the Reed-Muller code.
We introduce a two-stage decimation process to improve the performance of neural belief propagation (NBP), recently introduced by Nachmani et al., for short low-density parity-check (LDPC) codes. In the first stage, we build a list by iterating between a conventional NBP decoder and guessing the least reliable bit. The second stage iterates between a conventional NBP decoder and learned decimation, where we use a neural network to decide the decimation value for each bit. For a (128,64) LDPC code, the proposed NBP with decimation outperforms NBP decoding by 0.75 dB and performs within 1 dB from maximum-likelihood decoding at a block error rate of $10^{-4}$.
Motivated by recently derived fundamental limits on total (transmit + decoding) power for coded communication with VLSI decoders, this paper investigates the scaling behavior of the minimum total power needed to communicate over AWGN channels as the target bit-error-probability tends to zero. We focus on regular-LDPC codes and iterative message-passing decoders. We analyze scaling behavior under two VLSI complexity models of decoding. One model abstracts power consumed in processing elements (node model), and another abstracts power consumed in wires which connect the processing elements (wire model). We prove that a coding strategy using regular-LDPC codes with Gallager-B decoding achieves order-optimal scaling of total power under the node model. However, we also prove that regular-LDPC codes and iterative message-passing decoders cannot meet existing fundamental limits on total power under the wire model. Further, if the transmit energy-per-bit is bounded, total power grows at a rate that is worse than uncoded transmission. Complementing our theoretical results, we develop detailed physical models of decoding implementations using post-layout circuit simulations. Our theoretical and numerical results show that approaching fundamental limits on total power requires increasing the complexity of both the code design and the corresponding decoding algorithm as communication distance is increased or error-probability is lowered.
A low-density parity-check (LDPC) code is a linear block code described by a sparse parity-check matrix, which can be efficiently represented by a bipartite Tanner graph. The standard iterative decoding algorithm, known as belief propagation, passes messages along the edges of this Tanner graph. Density evolution is an efficient method to analyze the performance of the belief propagation decoding algorithm for a particular LDPC code ensemble, enabling the determination of a decoding threshold. The basic problem addressed in this work is how to optimize the Tanner graph so that the decoding threshold is as large as possible. We introduce a new code optimization technique which involves the search space range which can be thought of as minimizing randomness in differential evolution or limiting the search range in exhaustive search. This technique is applied to the design of good irregular LDPC codes and multiedge type LDPC codes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا