Do you want to publish a course? Click here

On the Metallicity-Color Relations and Bimodal Color Distributions in Extragalactic Globular Cluster Systems

127   0   0.0 ( 0 )
 Added by Michele Cantiello
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform a series of numerical experiments to study how the nonlinear metallicity--color relations predicted by different stellar population models affect the color distributions observed in extragalactic globular cluster systems. % We present simulations in the $UBVRIJHK$ bandpasses based on five different sets of simple stellar population (SSP) models. The presence of photometric scatter in the colors is included as well. % We find that unimodal metallicity distributions frequently ``project into bimodal color distributions. The likelihood of this effect depends on both the mean and dispersion of the metallicity distribution, as well as of course on the SSP model used for the transformation. % Adopting the Teramo-SPoT SSP models for reference, we find that optical--to--near-IR colors should be favored with respect to other colors to avoid the bias effect in globular cluster color distributions discussed by citet{yoon06}. In particular, colors such as vh or vk are more robust against nonlinearity of the metallicity--color relation, and an observed bimodal distribution in such colors is more likely to indicate a true underlying bimodal metallicity distribution. Similar conclusions come from the simulations based on different SSP models, although we also identify exceptions to this result.



rate research

Read More

213 - Sooyoung Kim 2013
Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. However, here we show that the observed spectroscopic dichotomy of M31 GCs emerges due to the nonlinear nature of metallicity-to-index conversion and thus one does not necessarily have to invoke two separate GC subsystems. We take this as a close analogy to the recent view that metallicity-color nonlinearity is primarily responsible for observed GC color bimodality. We also demonstrate that the metallicity-sensitive magnesium line displays non-negligible metallicity-index nonlinearity and Balmer lines show rather strong nonlinearity. This gives rise to bimodal index distributions, which are routinely interpreted as bimodal metallicity distributions, not considering metallicity-index nonlinearity. Our findings give a new insight into the constitution of M31s GC system, which could change much of the current thought on the formation of GC systems and their host galaxies.
112 - Suk-Jin Yoon 2011
One of the conundrums in extragalactic astronomy is the discrepancy in observed metallicity distribution functions (MDFs) between the two prime stellar components of early-type galaxies-globular clusters (GCs) and halo field stars. This is generally taken as evidence of highly decoupled evolutionary histories between GC systems and their parent galaxies. Here we show, however, that new developments in linking the observed GC colors to their intrinsic metallicities suggest nonlinear color-to-metallicity
We present the color distributions of globular cluster (GC) systems for 100 Virgo cluster early-type galaxies observed in the ACS Virgo Cluster Survey. The color distributions of individual GC systems are consistent with continuous trends across galaxy luminosity, color, and stellar mass. On average, almost all galaxies possess a component of metal-poor GCs, with the average fraction of metal-rich GCs ranging from 15 to 60%. The colors of both subpopulations correlate with host galaxy luminosity and color, with the red GCs having a steeper slope. To convert color to metallicity, we also introduce a preliminary (g-z)-[Fe/H] relation calibrated to Galactic, M49 and M87 GCs. This relation is nonlinear with a steeper slope for [Fe/H] < -0.8. As a result, the metallicities of the metal-poor and metal-rich GCs vary similarly with respect to galaxy luminosity and stellar mass, with relations of [Fe/H]_MP ~ L^0.16 ~ M_star^0.17 and [Fe/H]_MR ~ L^0.26 ~ M_star^0.22, respectively. Although these relations are shallower than the mass-metallicity relation predicted by wind models and observed for dwarf galaxies, they are very similar to the mass-metallicity relation for star forming galaxies in the same mass range. The offset between the two GC populations varies slowly (~ M_star^0.05) and is approximately 1 dex across three orders of magnitude in mass, suggesting a nearly universal amount of enrichment between the formation of the two populations of GCs. We also find that although the metal-rich GCs show a larger dispersion in color, it is the *metal-poor GCs* that have an equal or larger dispersion in metallicity. Like the color-magnitude relation, these relations derived from globular clusters present stringent constraints on the formation and evolution of early-type galaxies. (Abridged)
215 - S. Mieske , A. Jordan , P. Cote 2010
We investigate the color-magnitude relation for globular clusters (GCs) -- the so-called blue tilt -- detected in the ACS Fornax Cluster Survey and using the combined sample of GCs from the ACS Fornax and Virgo Cluster Surveys. We find a tilt of gamma_z=d(g-z)/dz=-0.0257 +- 0.0050 for the full GC sample of the Fornax Cluster Survey (~5800 GCs). This is slightly shallower than the value gamma_z=-0.0459 +- 0.0048 found for the Virgo Cluster Survey GC sample (~11100 GCs). The slope for the merged Fornax and Virgo datasets (~16900 GCs) is gamma_z=-0.0293 +- 0.0085, corresponding to a mass-metallicity relation of Z ~ M^0.43. We find that the blue tilt sets in at GC masses in excess of M ~ 2*10^5 M_sun. The tilt is stronger for GCs belonging to high-mass galaxies (M_* > 5 * 10^10 M_sun) than for those in low-mass galaxies (M_* < 5 * 10^10 M_sun). It is also more pronounced for GCs with smaller galactocentric distances. Our findings suggest a range of mass-metallicity relations Z_GC ~ M_GC^(0.3-0.7) which vary as a function of host galaxy mass/luminosity. We compare our observations to a recent model of star cluster self-enrichment with generally favorable results. We suggest that, within the context of this model, the proto-cluster clouds out of which the GCs formed may have had density profiles slightly steeper than isothermal and/or star formation efficiencies somewhat below 0.3. We caution, however, that the significantly different appearance of the CMDs defined by the GC systems associated with galaxies of similar mass and morphological type pose a challenge to any single mechanism that seeks to explain the blue tilt. We therefore suggest that the merger/accretion histories of individual galaxies have played a non-negligible role determining the distribution of GCs in the CMDs of individual GC systems.
We analyse the u-r color distribution of 24346 galaxies with Mr<=-18 and z<0.08, drawn from the Sloan Digital Sky Survey first data release, as a function of luminosity and environment. The color distribution is well fit with two Gaussian distributions, which we use to divide the sample into a blue and red population. At fixed luminosity, the mean color of the blue (red) distribution is nearly independent of environment, with a weakly significant (~3sigma) detection of a trend for colors to become redder by 0.1-0.14 (0.03-0.06) mag with a factor ~100 increase in local density, as characterised by the surface density of galaxies within a +/-1000 km/s redshift slice. In contrast, at fixed luminosity the fraction of galaxies in the red distribution is a strong function of local density, increasing from ~10-30 per cent of the population in the lowest density environments, to ~70 per cent at the highest densities. The strength of this trend is similar for both the brightest (-23<Mr<-22) and faintest (-19<Mr<-18) galaxies in our sample. The fraction of red galaxies within the virialised regions of clusters shows no significant dependence on velocity dispersion. Even at the lowest densities explored, a substantial population of red galaxies exists, which might be fossil groups. We propose that most star-forming galaxies today evolve at a rate that is determined primarily by their intrinsic properties, and independent of their environment. Any environmentally triggered transformations from blue to red colors must either occur on a short timescale, or preferentially at high redshift, to preserve the simple Gaussian nature of the color distribution. The mechanism must be effective for both bright and faint galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا