Do you want to publish a course? Click here

The Morse-Bott inequalities via dynamical systems

186   0   0.0 ( 0 )
 Added by David Hurtubise
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Let $f:M to mathbb{R}$ be a Morse-Bott function on a compact smooth finite dimensional manifold $M$. The polynomial Morse inequalities and an explicit perturbation of $f$ defined using Morse functions $f_j$ on the critical submanifolds $C_j$ of $f$ show immediately that $MB_t(f) = P_t(M) + (1+t)R(t)$, where $MB_t(f)$ is the Morse-Bott polynomial of $f$ and $P_t(M)$ is the Poincare polynomial of $M$. We prove that $R(t)$ is a polynomial with nonnegative integer coefficients by showing that the number of gradient flow lines of the perturbation of $f$ between two critical points $p,q in C_j$ coincides with the number of gradient flow lines between $p$ and $q$ of the Morse function $f_j$. This leads to a relationship between the kernels of the Morse-Smale-Witten boundary operators associated to the Morse functions $f_j$ and the perturbation of $f$. This method works when $M$ and all the critical submanifolds are oriented or when $mathbb{Z}_2$ coefficients are used.



rate research

Read More

To a direct sum of holomorphic line bundles, we can associate two fibrations, whose fibers are, respectively, the corresponding full flag manifold and the corresponding projective space. Iterating these procedures gives, respectively, a flag Bott tower and a generalized Bott tower. It is known that a generalized Bott tower is a toric manifold. However a flag Bott tower is not toric in general but we show that it is a GKM manifold, and we also show that for a given generalized Bott tower we can find the associated flag Bott tower so that the closure of a generic torus orbit in the latter is a blow-up of the former along certain invariant submanifolds. We use GKM theory together with toric geometric arguments.
We prove that Besse contact forms on closed connected 3-manifolds, that is, contact forms with a periodic Reeb flow, are the local maximizers of suitable higher systolic ratios. Our result extends earlier ones for Zoll contact forms, that is, contact forms whose Reeb flow defines a free circle action.
When the cohomology ring of a generalized Bott manifold with $mathbb{Q}$-coefficient is isomorphic to that of a product of complex projective spaces $mathbb{C}P^{n_i}$, the generalized Bott manifold is said to be $mathbb{Q}$-trivial. We find a necessary and sufficient condition for a generalized Bott manifold to be $mathbb{Q}$-trivial. In particular, every $mathbb{Q}$-trivial generalized Bott manifold is diffeomorphic to a $prod_{n_i>1}mathbb{C}P^{n_i}$-bundle over a $mathbb{Q}$-trivial Bott manifold.
In the present paper, we characterize Fano Bott manifolds up to diffeomorphism in terms of three operations on matrix. More precisely, we prove that given two Fano Bott manifolds $X$ and $X$, the following conditions are equivalent: (1) the upper triangular matrix associated to $X$ can be transformed into that of $X$ by those three operations; (2) $X$ and $X$ are diffeomorphic; (3) the integral cohomology rings of $X$ and $X$ are isomorphic as graded rings. As a consequence, we affirmatively answer the cohomological rigidity problem for Fano Bott manifolds.
148 - Yong Lin , Chong Wang 2021
In this paper, we prove that discrete Morse functions on digraphs are flat Witten-Morse functions and Witten complexes of transitive digraphs approach to Morse complexes. We construct a chain complex consisting of the formal linear combinations of paths which are not only critical paths of the transitive closure but also allowed elementary paths of the digraph, and prove that the homology of the new chain complex is isomorphic to the path homology. On the basis of the above results, we give the Morse inequalities on digraphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا