Do you want to publish a course? Click here

Cohomological rigidity for Fano Bott manifolds

114   0   0.0 ( 0 )
 Added by Akihiro Higashitani
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In the present paper, we characterize Fano Bott manifolds up to diffeomorphism in terms of three operations on matrix. More precisely, we prove that given two Fano Bott manifolds $X$ and $X$, the following conditions are equivalent: (1) the upper triangular matrix associated to $X$ can be transformed into that of $X$ by those three operations; (2) $X$ and $X$ are diffeomorphic; (3) the integral cohomology rings of $X$ and $X$ are isomorphic as graded rings. As a consequence, we affirmatively answer the cohomological rigidity problem for Fano Bott manifolds.



rate research

Read More

The cohomological rigidity problem for toric manifolds asks whether toric manifolds are diffeomorphic (or homeomorphic) if their integral cohomology rings are isomorphic. Many affirmative partial solutions to the problem have been obtained and no counterexample is known. In this paper, we study the diffeomorphism classification of toric Fano $d$-folds with $d=3,4$ or with Picard number $ge 2d-2$. In particular, we show that those manifolds except for two toric Fano $4$-folds are diffeomorphic if their integral cohomology rings are isomorphic. The exceptional two toric Fano $4$-folds (their ID numbers are 50 and 57 on a list of {O}bro) have isomorphic cohomology rings and their total Pontryagin classes are preserved under an isomorphism between their cohomology rings, but we do not know whether they are diffeomorphic or homeomorphic.
It is proved that if two quasitoric manifolds of dimension $le 2p^2-4$ for a prime $p$ have isomorphic cohomology rings, then they have the same $p$-local stable homotopy type.
In this article the generic torus orbit closure in a flag Bott manifold is shown to be a non-singular toric variety, and its fan structure is explicitly calculated.
402 - Sho Hasui 2013
A quasitoric manifold is a smooth manifold with a locally standard torus action for which the orbit space is identified with a simple polytope. For a class of topological spaces, the class is called strongly cohomologically rigid if any isomorphism of cohomology rings can be realized as a homeomorphism. This paper shows the strong cohomological rigidity of the class of quasitoric manifolds over $I^3$.
When the cohomology ring of a generalized Bott manifold with $mathbb{Q}$-coefficient is isomorphic to that of a product of complex projective spaces $mathbb{C}P^{n_i}$, the generalized Bott manifold is said to be $mathbb{Q}$-trivial. We find a necessary and sufficient condition for a generalized Bott manifold to be $mathbb{Q}$-trivial. In particular, every $mathbb{Q}$-trivial generalized Bott manifold is diffeomorphic to a $prod_{n_i>1}mathbb{C}P^{n_i}$-bundle over a $mathbb{Q}$-trivial Bott manifold.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا